Issue |
A&A
Volume 381, Number 1, JanuaryI 2002
|
|
---|---|---|
Page(s) | 340 - 356 | |
Section | Astronomical instrumentation | |
DOI | https://doi.org/10.1051/0004-6361:20011438 | |
Published online | 15 January 2002 |
Gravitational instability of finite isothermal spheres
Laboratoire de Physique Quantique, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France Institute for Theoretical Physics, University of California, Santa Barbara, California CA93106, USA
Corresponding author: chavanis@irsamc2.ups-tlse.fr
Received:
19
March
2001
Accepted:
6
August
2001
We investigate the stability of bounded self-gravitating systems in the canonical ensemble by using a thermodynamical approach. Our study extends the earlier work of Padmanabhan ([CITE]) in the microcanonical ensemble. By studying the second variations of the free energy, we find that instability sets in precisely at the point of minimum temperature in agreement with the theorem of Katz ([CITE]). The perturbation that induces instability at this point is calculated explicitly; it has not a “core-halo” structure contrary to what happens in the microcanonical ensemble. We also study Jeans type gravitational instability of isothermal gaseous spheres described by Navier-Stokes equations. The introduction of a container and the consideration of an inhomogeneous distribution of matter avoids the Jeans swindle. We show analytically the equivalence between dynamical stability and thermodynamical stability and the fact that the stability of isothermal gas spheres does not depend on the viscosity. This confirms the findings of Semelin et al. ([CITE]) who used numerical methods or approximations. We also give a simpler derivation of the geometric hierarchy of scales inducing instability discovered by these authors. The density profiles that trigger these instabilities are calculated explicitly; high order modes of instability present numerous oscillations whose nodes also follow a geometric progression. This suggests that the system will fragment in a series of “clumps” and that these “clumps” will themselves fragment in substructures. The fact that both the domain sizes leading to instability and the “clumps” sizes within a domain follow a geometric progression with the same ratio suggests a fractal-like behavior. This gives further support to the interpretation of de Vega et al. (1996) concerning the fractal structure of the interstellar medium.
Key words: hydrodynamics / instabilities
© ESO, 2002
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.