Issue |
A&A
Volume 396, Number 1, December II 2002
|
|
---|---|---|
Page(s) | 315 - 329 | |
Section | Astronomical instrumentation | |
DOI | https://doi.org/10.1051/0004-6361:20021374 | |
Published online | 22 November 2002 |
Gravitational instability of slowly rotating isothermal spheres
Laboratoire de Physique Quantique, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
Corresponding author: chavanis@irsamc2.ups-tlse.fr
Received:
15
April
2002
Accepted:
12
September
2002
We discuss the statistical mechanics of rotating self-gravitating systems by allowing properly for the conservation of angular momentum. We study analytically the case of slowly rotating isothermal spheres by expanding the solutions of the Boltzmann-Poisson equation in a series of Legendre polynomials, adapting the procedure introduced by Chandrasekhar (1933) for distorted polytropes. We show how the classical spiral of Lynden-Bell & Wood (1967) in the temperature-energy plane is deformed by rotation. We find that gravitational instability occurs sooner in the microcanonical ensemble and later in the canonical ensemble. According to standard turning point arguments, the onset of the collapse coincides with the minimum energy or minimum temperature state in the series of equilibria. Interestingly, it happens to be close to the point of maximum flattening. We generalize the singular isothermal solution to the case of a slowly rotating configuration. We also consider slowly rotating configurations of the self-gravitating Fermi gas at non-zero temperature.
Key words: hydrodynamics / instabilities / stars: formation
© ESO, 2002
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.