Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

hayate: photometric redshift estimation by hybridizing machine learning with template fitting

Shingo Tanigawa, K Glazebrook, C Jacobs, I Labbe and A K Qin
Monthly Notices of the Royal Astronomical Society 530 (2) 2012 (2024)
https://doi.org/10.1093/mnras/stae411

Predicting the ages of galaxies with an artificial neural network

Laura J Hunt, Kevin A Pimbblet and David M Benoit
Monthly Notices of the Royal Astronomical Society 529 (1) 479 (2024)
https://doi.org/10.1093/mnras/stae479

Accuracy of the Photometric Redshifts of Brightest Cluster Galaxies Identified in the CFHTLS-W1

Sinan Aliş
Journal of Advanced Research in Natural and Applied Sciences 10 (4) 954 (2024)
https://doi.org/10.28979/jarnas.1562591

GAINN: The Galaxy Assembly and Interaction Neural Networks for High-redshift JWST Observations

Lillian Santos-Olmsted, Kirk S. S. Barrow and Tilman Hartwig
The Astrophysical Journal 969 (2) 144 (2024)
https://doi.org/10.3847/1538-4357/ad46fd

Astronomia ex machina: a history, primer and outlook on neural networks in astronomy

Michael J. Smith and James E. Geach
Royal Society Open Science 10 (5) (2023)
https://doi.org/10.1098/rsos.221454

The Dawes Review 10: The impact of deep learning for the analysis of galaxy surveys

M. Huertas-Company and F. Lanusse
Publications of the Astronomical Society of Australia 40 (2023)
https://doi.org/10.1017/pasa.2022.55

Dealing with imbalanced regression problem for large dataset using scalable Artificial Neural Network

Snigdha Sen, Krishna Pratap Singh and Pavan Chakraborty
New Astronomy 99 101959 (2023)
https://doi.org/10.1016/j.newast.2022.101959

Large-scale density and velocity field reconstructions with neural networks

Punyakoti Ganeshaiah Veena, Robert Lilow and Adi Nusser
Monthly Notices of the Royal Astronomical Society 522 (4) 5291 (2023)
https://doi.org/10.1093/mnras/stad1222

Rehman Shahzad, Habib Fard, Ibrahim Mahariq, Mamdouh El Haj Assad, Mohammad A. Al-Shabi, Palani Balaya, Naresh C. Das and Sheng Xu
28 (2022)
https://doi.org/10.1117/12.2632639

Improving Photometric Redshifts by Merging Probability Density Functions from Template-Based and Machine Learning Algorithms*

Ishaq Y. K. Alshuaili, John Y. H. Soo, Mohd. Zubir Mat Jafri and Yasmin Rafid
Astronomy Letters 48 (11) 665 (2022)
https://doi.org/10.1134/S1063773722110019

Photometric Redshifts With Machine Learning, Lights and Shadows on a Complex Data Science Use Case

Massimo Brescia, Stefano Cavuoti, Oleksandra Razim, et al.
Frontiers in Astronomy and Space Sciences 8 (2021)
https://doi.org/10.3389/fspas.2021.658229

Predicting bulge to total luminosity ratio of galaxies using deep learning

Harsh Grover, Omkar Bait, Yogesh Wadadekar and Preetish K Mishra
Monthly Notices of the Royal Astronomical Society 506 (3) 3313 (2021)
https://doi.org/10.1093/mnras/stab1935

Machines learn to infer stellar parameters just by looking at a large number of spectra

Nima Sedaghat, Martino Romaniello, Jonathan E Carrick and François-Xavier Pineau
Monthly Notices of the Royal Astronomical Society 501 (4) 6026 (2021)
https://doi.org/10.1093/mnras/staa3540

Searching for AGN and pulsar candidates in 4FGL unassociated sources using machine learning

Ke-Rui Zhu, Shi-Ju Kang and Yong-Gang Zheng
Research in Astronomy and Astrophysics 21 (1) 015 (2021)
https://doi.org/10.1088/1674-4527/21/1/15

Nonsequential neural network for simultaneous, consistent classification, and photometric redshifts of OTELO galaxies

J. A. de Diego, J. Nadolny, Á. Bongiovanni, et al.
Astronomy & Astrophysics 655 A56 (2021)
https://doi.org/10.1051/0004-6361/202141360

Photometric Redshift Estimation with Galaxy Morphology Using Self-organizing Maps

Derek Wilson, Hooshang Nayyeri, Asantha Cooray and Boris Häußler
The Astrophysical Journal 888 (2) 83 (2020)
https://doi.org/10.3847/1538-4357/ab5a79

Tests of Catastrophic Outlier Prediction in Empirical Photometric Redshift Estimation with Redshift Probability Distributions

E. Jones and J. Singal
Publications of the Astronomical Society of the Pacific 132 (1008) 024501 (2020)
https://doi.org/10.1088/1538-3873/ab54ed

The PAU Survey: Photometric redshifts using transfer learning from simulations

M Eriksen, A Alarcon, L Cabayol, et al.
Monthly Notices of the Royal Astronomical Society 497 (4) 4565 (2020)
https://doi.org/10.1093/mnras/staa2265

Artificial neural networks for selection of pulsar candidates from radio continuum surveys

Shinsuke Ideguchi, Shintaro Yoshiura, Shi Dai, et al.
Monthly Notices of the Royal Astronomical Society 494 (1) 1035 (2020)
https://doi.org/10.1093/mnras/staa742

Assessing the photometric redshift precision of the S-PLUS survey: the Stripe-82 as a test-case

A Molino, M V Costa-Duarte, L Sampedro, et al.
Monthly Notices of the Royal Astronomical Society 499 (3) 3884 (2020)
https://doi.org/10.1093/mnras/staa1586

Surveying the reach and maturity of machine learning and artificial intelligence in astronomy

Christopher J. Fluke and Colin Jacobs
WIREs Data Mining and Knowledge Discovery 10 (2) (2020)
https://doi.org/10.1002/widm.1349

Photometric redshifts for X-ray-selected active galactic nuclei in the eROSITA era

M Brescia, M Salvato, S Cavuoti, et al.
Monthly Notices of the Royal Astronomical Society 489 (1) 663 (2019)
https://doi.org/10.1093/mnras/stz2159

Applicability of connectionist methods to predict dynamic viscosity of silver/water nanofluid by using ANN-MLP, MARS and MPR algorithms

Mohammad Hossein Ahmadi, Behnam Mohseni-Gharyehsafa, Mahmood Farzaneh-Gord, et al.
Engineering Applications of Computational Fluid Mechanics 13 (1) 220 (2019)
https://doi.org/10.1080/19942060.2019.1571442

Applicability of connectionist methods to predict thermal resistance of pulsating heat pipes with ethanol by using neural networks

Mohammad Hossein Ahmadi, Afshin Tatar, Mohammad Alhuyi Nazari, et al.
International Journal of Heat and Mass Transfer 126 1079 (2018)
https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.085

A Catalog of Photometric Redshift and the Distribution of Broad Galaxy Morphologies

Nicholas Paul, Nicholas Virag and Lior Shamir
Galaxies 6 (2) 64 (2018)
https://doi.org/10.3390/galaxies6020064

Development of multilayer perceptron artificial neural network (MLP-ANN) and least square support vector machine (LSSVM) models to predict Nusselt number and pressure drop of TiO2/water nanofluid flows through non-straight pathways

Mostafa Kahani, Mohammad Hossein Ahmadi, Afshin Tatar and Milad Sadeghzadeh
Numerical Heat Transfer, Part A: Applications 74 (4) 1190 (2018)
https://doi.org/10.1080/10407782.2018.1523597

Thermal conductivity and dynamic viscosity modeling of Fe2O3/water nanofluid by applying various connectionist approaches

Mohammad Hossein Ahmadi, Afshin Tatar, Parinaz Seifaddini, et al.
Numerical Heat Transfer, Part A: Applications 74 (6) 1301 (2018)
https://doi.org/10.1080/10407782.2018.1505092

Morpho-z: improving photometric redshifts with galaxy morphology

John Y H Soo, Bruno Moraes, Benjamin Joachimi, et al.
Monthly Notices of the Royal Astronomical Society 475 (3) 3613 (2018)
https://doi.org/10.1093/mnras/stx3201

Degradation analysis in the estimation of photometric redshifts from non-representative training sets

J D Rivera, B Moraes, A I Merson, et al.
Monthly Notices of the Royal Astronomical Society 477 (4) 4330 (2018)
https://doi.org/10.1093/mnras/sty880

Balancing the learning ability and memory demand of a perceptron-based dynamically trainable neural network

Edward Richter, Spencer Valancius, Josiah McClanahan, John Mixter and Ali Akoglu
The Journal of Supercomputing 74 (7) 3211 (2018)
https://doi.org/10.1007/s11227-018-2374-x

Transit clairvoyance: enhancingTESSfollow-up using artificial neural networks

David M. Kipping and Christopher Lam
Monthly Notices of the Royal Astronomical Society 465 (3) 3495 (2017)
https://doi.org/10.1093/mnras/stw2974

Analysing the 21 cm signal from the epoch of reionization with artificial neural networks

Hayato Shimabukuro and Benoit Semelin
Monthly Notices of the Royal Astronomical Society 468 (4) 3869 (2017)
https://doi.org/10.1093/mnras/stx734

Analysis of a custom support vector machine for photometric redshift estimation and the inclusion of galaxy shape information

E. Jones and J. Singal
Astronomy & Astrophysics 600 A113 (2017)
https://doi.org/10.1051/0004-6361/201629558

GPz: non-stationary sparse Gaussian processes for heteroscedastic uncertainty estimation in photometric redshifts

Ibrahim A. Almosallam, Matt J. Jarvis and Stephen J. Roberts
Monthly Notices of the Royal Astronomical Society 462 (1) 726 (2016)
https://doi.org/10.1093/mnras/stw1618

Tuning target selection algorithms to improve galaxy redshift estimates

Ben Hoyle, Kerstin Paech, Markus Michael Rau, Stella Seitz and Jochen Weller
Monthly Notices of the Royal Astronomical Society 458 (4) 4498 (2016)
https://doi.org/10.1093/mnras/stw563

Hierarchical Matching and Regression with Application to Photometric Redshift Estimation

Fionn Murtagh
Proceedings of the International Astronomical Union 12 (S325) 145 (2016)
https://doi.org/10.1017/S1743921317001569

A sparse Gaussian process framework for photometric redshift estimation

Ibrahim A. Almosallam, Sam N. Lindsay, Matt J. Jarvis and Stephen J. Roberts
Monthly Notices of the Royal Astronomical Society 455 (3) 2387 (2016)
https://doi.org/10.1093/mnras/stv2425

Machine-learning-based photometric redshifts for galaxies of the ESO Kilo-Degree Survey data release 2

S. Cavuoti, M. Brescia, C. Tortora, et al.
Monthly Notices of the Royal Astronomical Society 452 (3) 3100 (2015)
https://doi.org/10.1093/mnras/stv1496

Using neural networks to estimate redshift distributions. An application to CFHTLenS

Christopher Bonnett
Monthly Notices of the Royal Astronomical Society 449 (1) 1043 (2015)
https://doi.org/10.1093/mnras/stv230

Data augmentation for machine learning redshifts applied to Sloan Digital Sky Survey galaxies

Ben Hoyle, Markus Michael Rau, Christopher Bonnett, Stella Seitz and Jochen Weller
Monthly Notices of the Royal Astronomical Society 450 (1) 305 (2015)
https://doi.org/10.1093/mnras/stv599

Photometric redshift analysis in the Dark Energy Survey Science Verification data

C. Sánchez, M. Carrasco Kind, H. Lin, et al.
Monthly Notices of the Royal Astronomical Society 445 (2) 1482 (2014)
https://doi.org/10.1093/mnras/stu1836

Artificial neural network based calibrations for the prediction of galactic [N ii] λ6584 and Hα line luminosities

Hossein Teimoorinia and Sara L. Ellison
Monthly Notices of the Royal Astronomical Society 439 (4) 3526 (2014)
https://doi.org/10.1093/mnras/stu205

Exploring local fNL estimators based on the binned bispectrum

B. Casaponsa, R. B. Barreiro, E. Martínez-González, et al.
Monthly Notices of the Royal Astronomical Society 434 (1) 796 (2013)
https://doi.org/10.1093/mnras/stt1072

TWO MICRON ALL SKY SURVEY PHOTOMETRIC REDSHIFT CATALOG: A COMPREHENSIVE THREE-DIMENSIONAL CENSUS OF THE WHOLE SKY

Maciej Bilicki, Thomas H. Jarrett, John A. Peacock, Michelle E. Cluver and Louise Steward
The Astrophysical Journal Supplement Series 210 (1) 9 (2013)
https://doi.org/10.1088/0067-0049/210/1/9

A CRITICAL ASSESSMENT OF PHOTOMETRIC REDSHIFT METHODS: A CANDELS INVESTIGATION

Tomas Dahlen, Bahram Mobasher, Sandra M. Faber, et al.
The Astrophysical Journal 775 (2) 93 (2013)
https://doi.org/10.1088/0004-637X/775/2/93

THE SLOAN DIGITAL SKY SURVEY CO-ADD: A GALAXY PHOTOMETRIC REDSHIFT CATALOG

Ribamar R. R. Reis, Marcelle Soares-Santos, James Annis, et al.
The Astrophysical Journal 747 (1) 59 (2012)
https://doi.org/10.1088/0004-637X/747/1/59

Can Self-Organizing Maps Accurately Predict Photometric Redshifts?

M. J. Way and C. D. Klose
Publications of the Astronomical Society of the Pacific 124 (913) 274 (2012)
https://doi.org/10.1086/664796

The Efficacy of Galaxy Shape Parameters in Photometric Redshift Estimation: A Neural Network Approach

J. Singal, M. Shmakova, B. Gerke, R. L. Griffith and J. Lotz
Publications of the Astronomical Society of the Pacific 123 (903) 615 (2011)
https://doi.org/10.1086/660155

Astroinformatics of galaxies and quasars: a new general method for photometric redshifts estimation

O. Laurino, R. D’Abrusco, G. Longo and G. Riccio
Monthly Notices of the Royal Astronomical Society 418 (4) 2165 (2011)
https://doi.org/10.1111/j.1365-2966.2011.19416.x

Constraints on fNL from Wilkinson Microwave Anisotropy Probe 7-year data using a neural network classifier

B. Casaponsa, M. Bridges, A. Curto, et al.
Monthly Notices of the Royal Astronomical Society no (2011)
https://doi.org/10.1111/j.1365-2966.2011.19053.x

Photometric redshift estimation using spectral connectivity analysis

P. E. Freeman, J. A. Newman, A. B. Lee, J. W. Richards and C. M. Schafer
Monthly Notices of the Royal Astronomical Society 398 (4) 2012 (2009)
https://doi.org/10.1111/j.1365-2966.2009.15236.x

IMPROVING PHOTOMETRIC REDSHIFTS USINGGALAXY EVOLUTION EXPLOREROBSERVATIONS FOR THE SLOAN DIGITAL SKY SURVEY STRIPE 82 AND THE NEXT GENERATION OF OPTICAL AND SUNYAEV-ZELDOVICH CLUSTER SURVEYS

Michael D. Niemack, Raul Jimenez, Licia Verde, et al.
The Astrophysical Journal 690 (1) 89 (2009)
https://doi.org/10.1088/0004-637X/690/1/89

Two Novel Approaches for Photometric Redshift Estimation based on SDSS and 2MASS

Dan Wang, Yan-Xia Zhang, Chao Liu and Yong-Heng Zhao
Chinese Journal of Astronomy and Astrophysics 8 (1) 119 (2008)
https://doi.org/10.1088/1009-9271/8/1/13

A New Galaxy Group Finding Algorithm: Probability Friends‐of‐Friends

Hauyu Baobab Liu, B. C. Hsieh, Paul T. P. Ho, Lihwai Lin and Renbin Yan
The Astrophysical Journal 681 (2) 1046 (2008)
https://doi.org/10.1086/588183

Robust Machine Learning Applied to Astronomical Data Sets. III. Probabilistic Photometric Redshifts for Galaxies and Quasars in the SDSS andGALEX

Nicholas M. Ball, Robert J. Brunner, Adam D. Myers, et al.
The Astrophysical Journal 683 (1) 12 (2008)
https://doi.org/10.1086/589646

Automated classification of sloan digital sky survey (SDSS) stellar spectra using artificial neural networks

Mahdi Bazarghan and Ranjan Gupta
Astrophysics and Space Science 315 (1-4) 201 (2008)
https://doi.org/10.1007/s10509-008-9816-5

A New Technique for Galaxy Photometric Redshifts in the Sloan Digital Sky Survey

James J. Wray and James E. Gunn
The Astrophysical Journal 678 (1) 144 (2008)
https://doi.org/10.1086/529127

A Galaxy Photometric Redshift Catalog for the Sloan Digital Sky Survey Data Release 6

Hiroaki Oyaizu, Marcos Lima, Carlos E. Cunha, et al.
The Astrophysical Journal 674 (2) 768 (2008)
https://doi.org/10.1086/523666

Estimating Photometric Redshifts with Artificial Neural Networks and Multi-Parameters

Li-Li Li, Yan-Xia Zhang, Yong-Heng Zhao and Da-Wei Yang
Chinese Journal of Astronomy and Astrophysics 7 (3) 448 (2007)
https://doi.org/10.1088/1009-9271/7/3/16

Kernel regression for determining photometric redshifts from Sloan broad-band photometry

D. Wang, Y. X. Zhang, C. Liu and Y. H. Zhao
Monthly Notices of the Royal Astronomical Society 382 (4) 1601 (2007)
https://doi.org/10.1111/j.1365-2966.2007.12129.x

Mining the SDSS Archive. I. Photometric Redshifts in the Nearby Universe

Raffaele D’Abrusco, Antonino Staiano, Giuseppe Longo, et al.
The Astrophysical Journal 663 (2) 752 (2007)
https://doi.org/10.1086/518020

The luminosity function of high-redshift quasi-stellar objects. A combined analysis of GOODS and SDSS

F. Fontanot, S. Cristiani, P. Monaco, et al.
Astronomy & Astrophysics 461 (1) 39 (2007)
https://doi.org/10.1051/0004-6361:20066073

Support Vector Machines for Photometric Redshift Estimation from Broadband Photometry

Dan Wang, Yanxia Zhang and Yongheng Zhao
Data Science Journal 6 S474 (2007)
https://doi.org/10.2481/dsj.6.S474

The DEEP2 Galaxy Redshift Survey: Redshift Identification of Single‐Line Emission Galaxies

Evan N. Kirby, Puragra Guhathakurta, S. M. Faber, et al.
The Astrophysical Journal 660 (1) 62 (2007)
https://doi.org/10.1086/513464

Robust Machine Learning Applied to Astronomical Data Sets. II. Quantifying Photometric Redshifts for Quasars Using Instance‐based Learning

Nicholas M. Ball, Robert J. Brunner, Adam D. Myers, et al.
The Astrophysical Journal 663 (2) 774 (2007)
https://doi.org/10.1086/518362

A Comparison of BBN, ADTree and MLP in separating Quasars from Large Survey Catalogues

Yan-Xia Zhang and Yong-Heng Zhao
Chinese Journal of Astronomy and Astrophysics 7 (2) 289 (2007)
https://doi.org/10.1088/1009-9271/7/2/13

Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey

O. Ilbert, S. Arnouts, H. J. McCracken, et al.
Astronomy & Astrophysics 457 (3) 841 (2006)
https://doi.org/10.1051/0004-6361:20065138

Photometric Redshifts in the IRAC Shallow Survey

M. Brodwin, M. J. I. Brown, M. L. N. Ashby, et al.
The Astrophysical Journal 651 (2) 791 (2006)
https://doi.org/10.1086/507838

The GOODS-MUSIC sample: a multicolour catalog of near-IR selected galaxies in the GOODS-South field

A. Grazian, A. Fontana, C. De Santis, et al.
Astronomy & Astrophysics 449 (3) 951 (2006)
https://doi.org/10.1051/0004-6361:20053979

Identification and redshift determination of quasi-stellar objects with medium-band photometry: application to Gaia

J.- F. Claeskens, A. Smette, L. Vandenbulcke and J. Surdej
Monthly Notices of the Royal Astronomical Society 367 (3) 879 (2006)
https://doi.org/10.1111/j.1365-2966.2006.10024.x

Novel Methods for Predicting Photometric Redshifts from Broadband Photometry Using Virtual Sensors

M. J. Way and A. N. Srivastava
The Astrophysical Journal 647 (1) 102 (2006)
https://doi.org/10.1086/505293

Estimating Photometric Redshifts Using Support Vector Machines

Yogesh Wadadekar
Publications of the Astronomical Society of the Pacific 117 (827) 79 (2005)
https://doi.org/10.1086/427710

Spectroscopy and stellar populations of star-forming galaxies atz~ 3 in the Hubble Deep Field – South

I. Iwata, A. K. Inoue and D. Burgarella
Astronomy & Astrophysics 440 (3) 881 (2005)
https://doi.org/10.1051/0004-6361:20052893

X-ray spectral analysis of optically faint sources in theChandradeep fields

Francesca Civano, Andrea Comastri and Marcella Brusa
Monthly Notices of the Royal Astronomical Society 358 (2) 693 (2005)
https://doi.org/10.1111/j.1365-2966.2005.08821.x

On the photometric redshift estimates for FR II radio galaxies

O. V. Verkhodanov, A. I. Kopylov, Yu. N. Pariiskii, N. S. Soboleva and A. V. Temirova
Astronomy Letters 31 (4) 221 (2005)
https://doi.org/10.1134/1.1896065