Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Fuzzy and SVM Based Classification Model to Classify Spectral Objects in Sloan Digital Sky

Arodh Lal Karn, Carlos Andres Tavera Romero, Sudhakar Sengan, Abolfazl Mehbodniya, Julian L. Webber, Denis A. Pustokhin and Frank-Detlef Wende
IEEE Access 10 101276 (2022)
https://doi.org/10.1109/ACCESS.2022.3207480

Smart Intelligent Computing and Applications, Volume 1

Mariyam Ashai, Rhea Gautam Mukherjee, Sanjana P. Mundharikar, Vinayak Dev Kuanr and R. Harikrishnan
Smart Innovation, Systems and Technologies, Smart Intelligent Computing and Applications, Volume 1 282 377 (2022)
https://doi.org/10.1007/978-981-16-9669-5_34

Effectively using unsupervised machine learning in next generation astronomical surveys

I. Reis, M. Rotman, D. Poznanski, J.X. Prochaska and L. Wolf
Astronomy and Computing 34 100437 (2021)
https://doi.org/10.1016/j.ascom.2020.100437

Hardware-Aware Probabilistic Machine Learning Models

Laura Isabel Galindez Olascoaga, Wannes Meert and Marian Verhelst
Hardware-Aware Probabilistic Machine Learning Models 1 (2021)
https://doi.org/10.1007/978-3-030-74042-9_1

Identification of BASS DR3 sources as stars, galaxies, and quasars by XGBoost

Changhua Li, Yanxia Zhang, Chenzhou Cui, et al.
Monthly Notices of the Royal Astronomical Society 506 (2) 1651 (2021)
https://doi.org/10.1093/mnras/stab1650

Identification of emission-line stars in transition phase from pre-main sequence to main sequence

Suman Bhattacharyya, Blesson Mathew, Gourav Banerjee, et al.
Monthly Notices of the Royal Astronomical Society 507 (3) 3660 (2021)
https://doi.org/10.1093/mnras/stab2385

Efficient selection of quasar candidates based on optical and infrared photometric data using machine learning

Dongwei Fan, Xue-bing Wu, Yongheng Zhao, et al.
Monthly Notices of the Royal Astronomical Society 485 (4) 4539 (2019)
https://doi.org/10.1093/mnras/stz680

Probabilistic Random Forest: A Machine Learning Algorithm for Noisy Data Sets

Itamar Reis, Dalya Baron and Sahar Shahaf
The Astronomical Journal 157 (1) 16 (2019)
https://doi.org/10.3847/1538-3881/aaf101

A Systematic Study of Superluminous Supernova Light-curve Models Using Clustering

E. Chatzopoulos and Richard Tuminello
The Astrophysical Journal 874 (1) 68 (2019)
https://doi.org/10.3847/1538-4357/ab0ae6

Laplacian Regularized Kernel Canonical Correlation Ensemble for Remote Sensing Image Classification

Xiang-Jun Shen, Xiao-Zhen Luo, Timothy Apasiba Abeo, et al.
IEEE Geoscience and Remote Sensing Letters 16 (7) 1150 (2019)
https://doi.org/10.1109/LGRS.2019.2892491

Randomized apertures: high resolution imaging in far field

Xiaopeng Peng, Garreth J. Ruane, Marco B. Quadrelli and Grover A. Swartzlander
Optics Express 25 (15) 18296 (2017)
https://doi.org/10.1364/OE.25.018296

Automated novelty detection in the WISE survey with one-class support vector machines

A. Solarz, M. Bilicki, M. Gromadzki, et al.
Astronomy & Astrophysics 606 A39 (2017)
https://doi.org/10.1051/0004-6361/201730968

Photo- z with CuBAN z : An improved photometric redshift estimator using Clustering aided Back propagation Neural network

Saumyadip Samui and Shanoli Samui Pal
New Astronomy 51 169 (2017)
https://doi.org/10.1016/j.newast.2016.09.002

Eduardo Machado, Marcello Serqueira, Eduardo Ogasawara, Ricardo Ogando, Marcio A. G. Maia, Luiz Nicolaci da Costa, Riccardo Campisano, Gustavo Paiva Guedes and Eduardo Bezerra
123 (2016)
https://doi.org/10.1109/IJCNN.2016.7727189

OF GENES AND MACHINES: APPLICATION OF A COMBINATION OF MACHINE LEARNING TOOLS TO ASTRONOMY DATA SETS

S. Heinis, S. Kumar, S. Gezari, W. S. Burgett, K. C. Chambers, P. W. Draper, H. Flewelling, N. Kaiser, E. A. Magnier, N. Metcalfe and C. Waters
The Astrophysical Journal 821 (2) 86 (2016)
https://doi.org/10.3847/0004-637X/821/2/86

SDSS-DR12 bulk stellar spectral classification: Artificial neural networks approach

S. Kheirdastan and M. Bazarghan
Astrophysics and Space Science 361 (9) (2016)
https://doi.org/10.1007/s10509-016-2880-3

A support vector machine for spectral classification of emission-line galaxies from the Sloan Digital Sky Survey

Fei Shi, Yu-Yan Liu, Guang-Lan Sun, et al.
Monthly Notices of the Royal Astronomical Society 453 (1) 122 (2015)
https://doi.org/10.1093/mnras/stv1617

Spectral Classification Using Restricted Boltzmann Machine

Chen Fuqiang, Wu Yan, Bu Yude and Zhao Guodong
Publications of the Astronomical Society of Australia 31 (2014)
https://doi.org/10.1017/pasa.2013.38

Stellar spectra association rule mining method based on the weighted frequent pattern tree

Jiang-Hui Cai, Xu-Jun Zhao, Shi-Wei Sun, Ji-Fu Zhang and Hai-Feng Yang
Research in Astronomy and Astrophysics 13 (3) 334 (2013)
https://doi.org/10.1088/1674-4527/13/3/008

Selecting quasar candidates using a support vector machine classification system

Nanbo Peng, Yanxia Zhang, Yongheng Zhao and Xue-bing Wu
Monthly Notices of the Royal Astronomical Society 425 (4) 2599 (2012)
https://doi.org/10.1111/j.1365-2966.2012.21191.x

QUASI-STELLAR OBJECT SELECTION ALGORITHM USING TIME VARIABILITY AND MACHINE LEARNING: SELECTION OF 1620 QUASI-STELLAR OBJECT CANDIDATES FROM MACHO LARGE MAGELLANIC CLOUD DATABASE

Dae-Won Kim, Pavlos Protopapas, Yong-Ik Byun, et al.
The Astrophysical Journal 735 (2) 68 (2011)
https://doi.org/10.1088/0004-637X/735/2/68

Trends in Applied Intelligent Systems

Miguel Á. Montero, Roberto Ruíz, Miguel García-Torres and Luis M. Sarro
Lecture Notes in Computer Science, Trends in Applied Intelligent Systems 6096 611 (2010)
https://doi.org/10.1007/978-3-642-13022-9_61

Automated spectral classification using template matching

Fu-Qing Duan, Rong Liu, Ping Guo, Ming-Quan Zhou and Fu-Chao Wu
Research in Astronomy and Astrophysics 9 (3) 341 (2009)
https://doi.org/10.1088/1674-4527/9/3/009

Random forest algorithm for classification of multiwavelength data

Dan Gao, Yan-Xia Zhang and Yong-Heng Zhao
Research in Astronomy and Astrophysics 9 (2) 220 (2009)
https://doi.org/10.1088/1674-4527/9/2/011

Support vector machines and kd-tree for separating quasars from large survey data bases

Dan Gao, Yan-Xia Zhang and Yong-Heng Zhao
Monthly Notices of the Royal Astronomical Society 386 (3) 1417 (2008)
https://doi.org/10.1111/j.1365-2966.2008.13070.x

Decision table for classifying point sources based on FIRST and 2MASS databases

Yanxia Zhang, Yongheng Zhao and Dan Gao
Advances in Space Research 41 (12) 1949 (2008)
https://doi.org/10.1016/j.asr.2007.07.019

Two Novel Approaches for Photometric Redshift Estimation based on SDSS and 2MASS

Dan Wang, Yan-Xia Zhang, Chao Liu and Yong-Heng Zhao
Chinese Journal of Astronomy and Astrophysics 8 (1) 119 (2008)
https://doi.org/10.1088/1009-9271/8/1/13

k-Nearest Neighbors for automated classification of celestial objects

LiLi Li, YanXia Zhang and YongHeng Zhao
Science in China Series G: Physics, Mechanics and Astronomy 51 (7) 916 (2008)
https://doi.org/10.1007/s11433-008-0088-4

A Comparison of BBN, ADTree and MLP in separating Quasars from Large Survey Catalogues

Yan-Xia Zhang and Yong-Heng Zhao
Chinese Journal of Astronomy and Astrophysics 7 (2) 289 (2007)
https://doi.org/10.1088/1009-9271/7/2/13

Support Vector Machines for Photometric Redshift Estimation from Broadband Photometry

Dan Wang, Yanxia Zhang and Yongheng Zhao
Data Science Journal 6 S474 (2007)
https://doi.org/10.2481/dsj.6.S474