Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Galaxy mass-size segregation in the cosmic web from the CAVITY parent sample

I. Pérez, L. Gil, A. Ferré-Mateu, G. Torres-Ríos, A. Zurita, M. Argudo-Fernández, B. Bidaran, L. Sánchez-Menguiano, T. Ruiz-Lara, J. Domínguez-Gómez, S. Duarte Puertas, D. Espada, J. Falcón-Barroso, E. Florido, R. García-Benito, A. Jiménez, R. F. Peletier, J. Román, P. Sánchez Alarcón, P. Sánchez-Blázquez and P. Vásquez-Bustos
Astronomy & Astrophysics 695 A84 (2025)
https://doi.org/10.1051/0004-6361/202452514

Morphological classification of galaxies through structural and star formation parameters using machine learning

G Aguilar-Argüello, G Fuentes-Pineda, H M Hernández-Toledo, L A Martínez-Vázquez, J A Vázquez-Mata, S Brough, R Demarco, A Ghosh, Y Jiménez-Teja, G Martin, W J Pearson and C Sifón
Monthly Notices of the Royal Astronomical Society 537 (2) 876 (2025)
https://doi.org/10.1093/mnras/staf085

Automated quasar continuum estimation using neural networks

Francesco Pistis, Michele Fumagalli, Matteo Fossati, Trystyn Berg, Elena S. Mangola, Rajeshwari Dutta, Margherita Grespan, Angela Iovino, Katarzyna Małek, Sean Morrison, David N. A. Murphy, William J. Pearson, Ignasi Pérez-Ráfols, Matthew M. Pieri, Agnieszka Pollo and Daniela Vergani
Astronomy & Astrophysics 698 A292 (2025)
https://doi.org/10.1051/0004-6361/202453377

AN ADVANCED APPROACH TO THE DEFINITION OF THE “MILKY WAY GALAXIES-ANALOGUES”

I. B. VAVILOVA, P. M. FEDOROV, D. V. DOBRYCHEVA, O. M. SERGIJENKO, A. A. VASYLENKO, A. M. DMYTRENKO, V. P. KHRAMTSOV and O. V. KOMPANIIETS
Kosmìčna nauka ì tehnologìâ 30 (4) 81 (2024)
https://doi.org/10.15407/knit2024.04.081

Impact of PSF misestimation and galaxy population bias on precision shear measurement using a CNN

L M Voigt
Monthly Notices of the Royal Astronomical Society 528 (2) 3217 (2024)
https://doi.org/10.1093/mnras/stae038

Automating galaxy morphology classification using k-nearest neighbours and non-parametric statistics

Kavya Mukundan, Preethi Nair, Jeremy Bailin and Wenhao Li
Monthly Notices of the Royal Astronomical Society 533 (1) 292 (2024)
https://doi.org/10.1093/mnras/stae1684

WISE2MBH: a scaling-based algorithm for probing supermassive black hole masses through WISE catalogues

J Hernández-Yévenes, N Nagar, V Arratia and T H Jarrett
Monthly Notices of the Royal Astronomical Society 531 (4) 4503 (2024)
https://doi.org/10.1093/mnras/stae1372

NGC 3521 AS THE MILKY WAY ANALOGUE: SPECTRAL ENERGY DISTRIBUTION FROM UV TO RADIO AND PHOTOMETRIC VARIABILITY

O. S. PASTOVEN, O. V. KOMPANIIETS, I. B. VAVILOVA and I. O. IZVIEKOVA
Kosmìčna nauka ì tehnologìâ 30 (6) 67 (2024)
https://doi.org/10.15407/knit2024.06.067

From images to features: unbiased morphology classification via variational auto-encoders and domain adaptation

Quanfeng Xu, Shiyin Shen, Rafael S de Souza, Mi Chen, Renhao Ye, Yumei She, Zhu Chen, Emille E O Ishida, Alberto Krone-Martins and Rupesh Durgesh
Monthly Notices of the Royal Astronomical Society 526 (4) 6391 (2023)
https://doi.org/10.1093/mnras/stad3181

Morphological classification of radio galaxies with Wasserstein generative adversarial network-supported augmentation

Lennart Rustige, Janis Kummer, Florian Griese, et al.
RAS Techniques and Instruments 2 (1) 264 (2023)
https://doi.org/10.1093/rasti/rzad016

Radio properties of the low-redshift isolated galaxies with active nuclei

N.G. Pulatova, I.B. Vavilova , A.A. Vasylenko and O.M. Ulyanov
Kinematika i fizika nebesnyh tel (Online) 39 (2) 47 (2023)
https://doi.org/10.15407/kfnt2023.02.047

Classifying MaNGA velocity dispersion profiles by machine learning

Yi Duann, Yong Tian and Chung-Ming Ko
RAS Techniques and Instruments 2 (1) 649 (2023)
https://doi.org/10.1093/rasti/rzad044

MULTIWAVELENGTH PROPERTIES OF THE LOW-REDSHIFT ISOLATED GALAXIES WITH ACTIVE NUCLEI MODELLED WITH CIGALE

O. V. KOMPANIIETS
Kosmìčna nauka ì tehnologìâ 29 (5) 88 (2023)
https://doi.org/10.15407/knit2023.05.088

Spectral classification of LAMOST emission line galaxies based on machine learning methods

Li-Li Wang, Wen-Yan Zheng, Li-Xia Rong, Guang-Jun Yang, Jun-Liang Zhang, Yan-Hong Xie, Wen-Bo Wang and Li-Min Zhao
New Astronomy 99 101965 (2023)
https://doi.org/10.1016/j.newast.2022.101965

Large-step neural network for learning the symplectic evolution from partitioned data

Xin Li, Jian Li, Zhihong Jeff Xia and Nikolaos Georgakarakos
Monthly Notices of the Royal Astronomical Society 524 (1) 1374 (2023)
https://doi.org/10.1093/mnras/stad1948

Radio Properties of the Low-Redshift Isolated Galaxies with Active Nuclei

N. G. Pulatova, I. B. Vavilova, A. A. Vasylenko and O. M. Ulyanov
Kinematics and Physics of Celestial Bodies 39 (2) 98 (2023)
https://doi.org/10.3103/S088459132302006X

Revisiting Galaxy Evolution in Morphology in the Cosmic Evolution Survey Field (COSMOS-ReGEM). I. Merging Galaxies

Jian Ren, Nan Li, F. S. Liu, Qifan Cui, Mingxiang Fu and Xian Zhong Zheng
The Astrophysical Journal 958 (1) 96 (2023)
https://doi.org/10.3847/1538-4357/acfeee

Hunting for exocomet transits in the TESS database using the Random Forest method

D. V. DOBRYCHEVA, M. YU. VASYLENKO, I. V. KULYK, YA. V. PAVLENKO, O. S. SHUBINA, I. V. LUK’YANYK and P. P. KORSUN
Kosmìčna nauka ì tehnologìâ 29 (6) 68 (2023)
https://doi.org/10.15407/knit2023.06.068

Quantifying the poor purity and completeness of morphological samples selected by galaxy colour

Rebecca J Smethurst, Karen L Masters, Brooke D Simmons, et al.
Monthly Notices of the Royal Astronomical Society 510 (3) 4126 (2022)
https://doi.org/10.1093/mnras/stab3607

Image feature extraction and galaxy classification: a novel and efficient approach with automated machine learning

F Tarsitano, C Bruderer, K Schawinski and W G Hartley
Monthly Notices of the Royal Astronomical Society 511 (3) 3330 (2022)
https://doi.org/10.1093/mnras/stac233

What drives the scatter of local star-forming galaxies in the BPT diagrams? A Machine Learning based analysis

Mirko Curti, Connor Hayden-Pawson, Roberto Maiolino, Francesco Belfiore, Filippo Mannucci, Alice Concas, Giovanni Cresci, Alessandro Marconi and Michele Cirasuolo
Monthly Notices of the Royal Astronomical Society 512 (3) 4136 (2022)
https://doi.org/10.1093/mnras/stac544

Machine-learning prediction for mean motion resonance behaviour – The planar case

Xin Li, Jian Li, Zhihong Jeff Xia and Nikolaos Georgakarakos
Monthly Notices of the Royal Astronomical Society 511 (2) 2218 (2022)
https://doi.org/10.1093/mnras/stac166

Machine learning technique for morphological classification of galaxies from the SDSS. III. The CNN image-based inference of detailed features

V. KHRAMTSOV, I. B. VAVILOVA, D. V. DOBRYCHEVA, et al.
Kosmìčna nauka ì tehnologìâ 28 (5) 27 (2022)
https://doi.org/10.15407/knit2022.05.027

The luminosity function of ringed galaxies

Daniil V Smirnov and Vladimir P Reshetnikov
Monthly Notices of the Royal Astronomical Society 516 (3) 3692 (2022)
https://doi.org/10.1093/mnras/stac2549

Machine learning technique for morphological classification of galaxies from SDSS. II. The image-based morphological catalogs of galaxies at 0.02 I. B. VAVILOVA, V. KHRAMTSOV, D. V. DOBRYCHEVA, et al.
Kosmìčna nauka ì tehnologìâ 28 (1) 03 (2022)
https://doi.org/10.15407/knit2022.01.003