The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
This article has been cited by the following article(s):
Galaxy mass-size segregation in the cosmic web from the CAVITY parent sample
I. Pérez, L. Gil, A. Ferré-Mateu, G. Torres-Ríos, A. Zurita, M. Argudo-Fernández, B. Bidaran, L. Sánchez-Menguiano, T. Ruiz-Lara, J. Domínguez-Gómez, S. Duarte Puertas, D. Espada, J. Falcón-Barroso, E. Florido, R. García-Benito, A. Jiménez, R. F. Peletier, J. Román, P. Sánchez Alarcón, P. Sánchez-Blázquez and P. Vásquez-Bustos Astronomy & Astrophysics 695 A84 (2025) https://doi.org/10.1051/0004-6361/202452514
Morphological classification of galaxies through structural and star formation parameters using machine learning
G Aguilar-Argüello, G Fuentes-Pineda, H M Hernández-Toledo, L A Martínez-Vázquez, J A Vázquez-Mata, S Brough, R Demarco, A Ghosh, Y Jiménez-Teja, G Martin, W J Pearson and C Sifón Monthly Notices of the Royal Astronomical Society 537(2) 876 (2025) https://doi.org/10.1093/mnras/staf085
Automated quasar continuum estimation using neural networks
Francesco Pistis, Michele Fumagalli, Matteo Fossati, Trystyn Berg, Elena S. Mangola, Rajeshwari Dutta, Margherita Grespan, Angela Iovino, Katarzyna Małek, Sean Morrison, David N. A. Murphy, William J. Pearson, Ignasi Pérez-Ráfols, Matthew M. Pieri, Agnieszka Pollo and Daniela Vergani Astronomy & Astrophysics 698 A292 (2025) https://doi.org/10.1051/0004-6361/202453377
AN ADVANCED APPROACH TO THE DEFINITION OF THE “MILKY WAY GALAXIES-ANALOGUES”
I. B. VAVILOVA, P. M. FEDOROV, D. V. DOBRYCHEVA, O. M. SERGIJENKO, A. A. VASYLENKO, A. M. DMYTRENKO, V. P. KHRAMTSOV and O. V. KOMPANIIETS Kosmìčna nauka ì tehnologìâ 30(4) 81 (2024) https://doi.org/10.15407/knit2024.04.081
Impact of PSF misestimation and galaxy population bias on precision shear measurement using a CNN
Automating galaxy morphology classification using k-nearest neighbours and non-parametric statistics
Kavya Mukundan, Preethi Nair, Jeremy Bailin and Wenhao Li Monthly Notices of the Royal Astronomical Society 533(1) 292 (2024) https://doi.org/10.1093/mnras/stae1684
WISE2MBH: a scaling-based algorithm for probing supermassive black hole masses through WISE catalogues
J Hernández-Yévenes, N Nagar, V Arratia and T H Jarrett Monthly Notices of the Royal Astronomical Society 531(4) 4503 (2024) https://doi.org/10.1093/mnras/stae1372
NGC 3521 AS THE MILKY WAY ANALOGUE: SPECTRAL ENERGY DISTRIBUTION FROM UV TO RADIO AND PHOTOMETRIC VARIABILITY
From images to features: unbiased morphology classification via variational auto-encoders and domain adaptation
Quanfeng Xu, Shiyin Shen, Rafael S de Souza, Mi Chen, Renhao Ye, Yumei She, Zhu Chen, Emille E O Ishida, Alberto Krone-Martins and Rupesh Durgesh Monthly Notices of the Royal Astronomical Society 526(4) 6391 (2023) https://doi.org/10.1093/mnras/stad3181
Morphological classification of radio galaxies with Wasserstein generative adversarial network-supported augmentation
Radio properties of the low-redshift isolated galaxies with active nuclei
N.G. Pulatova, I.B. Vavilova , A.A. Vasylenko and O.M. Ulyanov Kinematika i fizika nebesnyh tel (Online) 39(2) 47 (2023) https://doi.org/10.15407/kfnt2023.02.047
Classifying MaNGA velocity dispersion profiles by machine learning
Spectral classification of LAMOST emission line galaxies based on machine learning methods
Li-Li Wang, Wen-Yan Zheng, Li-Xia Rong, Guang-Jun Yang, Jun-Liang Zhang, Yan-Hong Xie, Wen-Bo Wang and Li-Min Zhao New Astronomy 99 101965 (2023) https://doi.org/10.1016/j.newast.2022.101965
Large-step neural network for learning the symplectic evolution from partitioned data
Xin Li, Jian Li, Zhihong Jeff Xia and Nikolaos Georgakarakos Monthly Notices of the Royal Astronomical Society 524(1) 1374 (2023) https://doi.org/10.1093/mnras/stad1948
Radio Properties of the Low-Redshift Isolated Galaxies with Active Nuclei
N. G. Pulatova, I. B. Vavilova, A. A. Vasylenko and O. M. Ulyanov Kinematics and Physics of Celestial Bodies 39(2) 98 (2023) https://doi.org/10.3103/S088459132302006X
Revisiting Galaxy Evolution in Morphology in the Cosmic Evolution Survey Field (COSMOS-ReGEM). I. Merging Galaxies
Hunting for exocomet transits in the TESS database using the Random Forest method
D. V. DOBRYCHEVA, M. YU. VASYLENKO, I. V. KULYK, YA. V. PAVLENKO, O. S. SHUBINA, I. V. LUK’YANYK and P. P. KORSUN Kosmìčna nauka ì tehnologìâ 29(6) 68 (2023) https://doi.org/10.15407/knit2023.06.068
Quantifying the poor purity and completeness of morphological samples selected by galaxy colour
Rebecca J Smethurst, Karen L Masters, Brooke D Simmons, et al. Monthly Notices of the Royal Astronomical Society 510(3) 4126 (2022) https://doi.org/10.1093/mnras/stab3607
Image feature extraction and galaxy classification: a novel and efficient approach with automated machine learning
F Tarsitano, C Bruderer, K Schawinski and W G Hartley Monthly Notices of the Royal Astronomical Society 511(3) 3330 (2022) https://doi.org/10.1093/mnras/stac233
What drives the scatter of local star-forming galaxies in the BPT diagrams? A Machine Learning based analysis
Mirko Curti, Connor Hayden-Pawson, Roberto Maiolino, Francesco Belfiore, Filippo Mannucci, Alice Concas, Giovanni Cresci, Alessandro Marconi and Michele Cirasuolo Monthly Notices of the Royal Astronomical Society 512(3) 4136 (2022) https://doi.org/10.1093/mnras/stac544
Machine-learning prediction for mean motion resonance behaviour – The planar case
Xin Li, Jian Li, Zhihong Jeff Xia and Nikolaos Georgakarakos Monthly Notices of the Royal Astronomical Society 511(2) 2218 (2022) https://doi.org/10.1093/mnras/stac166
Diffuse radio emission from non-Planckgalaxy clusters in the LoTSS-DR2 fields
Machine learning technique for morphological classification of galaxies from SDSS. II. The image-based morphological catalogs of galaxies at 0.02
I. B. VAVILOVA, V. KHRAMTSOV, D. V. DOBRYCHEVA, et al. Kosmìčna nauka ì tehnologìâ 28(1) 03 (2022) https://doi.org/10.15407/knit2022.01.003