Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

KiDS-SQuaD - II. Machine learning selection of bright extragalactic objects to search for new gravitationally lensed quasars

A&A, 632 (2019) A56
DOI: https://doi.org/10.1051/0004-6361/201936006

Using Convolutional Neural Networks to Search for Strongly Lensed Quasars in KiDS DR5

Zizhao He, Rui Li, Yiping Shu, Crescenzo Tortora, Xinzhong Er, Raoul Cañameras, Stefan Schuldt, Nicola R. Napolitano, Bharath Chowdhary N, Qihang Chen, Nan Li, Haicheng Feng, Limeng Deng, Guoliang Li, L. V. E. Koopmans and Andrej Dvornik
The Astrophysical Journal 981 (2) 168 (2025)
https://doi.org/10.3847/1538-4357/adaf28

Morpho-photometric Classification of KiDS DR5 Sources Based on Neural Networks: A Comprehensive Star–Quasar–Galaxy Catalog

Hai-Cheng Feng, Rui Li, Nicola R. Napolitano, Sha-Sha Li, J. M. Bai, Yue Dong, Ran Li, H. T. Liu, Kai-Xing Lu, Zhi-Wei Pan, Mario Radovich, Huan-Yuan Shan, Jian-Guo Wang, Wen-Zhe Xi, Ling-Hua Xie, Zun-Li Yuan and Yang-Wei Zhang
The Astrophysical Journal Supplement Series 279 (1) 26 (2025)
https://doi.org/10.3847/1538-4365/adde5a

Systematic comparison of neural networks used in discovering strong gravitational lenses

Anupreeta More, Raoul Cañameras, Anton T Jaelani, Yiping Shu, Yuichiro Ishida, Kenneth C Wong, Kaiki Taro Inoue, Stefan Schuldt and Alessandro Sonnenfeld
Monthly Notices of the Royal Astronomical Society 533 (1) 525 (2024)
https://doi.org/10.1093/mnras/stae1597

Searching for Strong Gravitational Lenses

Cameron Lemon, Frédéric Courbin, Anupreeta More, Paul Schechter, Raoul Cañameras, Ludovic Delchambre, Calvin Leung, Yiping Shu, Chiara Spiniello, Yashar Hezaveh, Jonas Klüter and Richard McMahon
Space Science Reviews 220 (2) (2024)
https://doi.org/10.1007/s11214-024-01042-9

Euclid preparation

L. Bisigello, M. Massimo, C. Tortora, S. Fotopoulou, V. Allevato, M. Bolzonella, C. Gruppioni, L. Pozzetti, G. Rodighiero, S. Serjeant, P. A. C. Cunha, L. Gabarra, A. Feltre, A. Humphrey, F. La Franca, H. Landt, F. Mannucci, I. Prandoni, M. Radovich, F. Ricci, M. Salvato, F. Shankar, D. Stern, L. Spinoglio, D. Vergani, et al.
Astronomy & Astrophysics 691 A1 (2024)
https://doi.org/10.1051/0004-6361/202450446

Boost recall in quasi-stellar object selection from highly imbalanced photometric datasets

Giorgio Calderone, Francesco Guarneri, Matteo Porru, Stefano Cristiani, Andrea Grazian, Luciano Nicastro, Manuela Bischetti, Konstantina Boutsia, Guido Cupani, Valentina D’Odorico, Chiara Feruglio and Fabio Fontanot
Astronomy & Astrophysics 683 A34 (2024)
https://doi.org/10.1051/0004-6361/202346625

Clusternets: a deep learning approach to probe clustering dark energy

Amirmohammad Chegeni, Farbod Hassani, Alireza Vafaei Sadr, Nima Khosravi and Martin Kunz
Monthly Notices of the Royal Astronomical Society 531 (1) 1534 (2024)
https://doi.org/10.1093/mnras/stae1075

CatNorth: An Improved Gaia DR3 Quasar Candidate Catalog with Pan-STARRS1 and CatWISE

Yuming Fu, Xue-Bing Wu, Yifan Li, Yuxuan Pang, Ravi Joshi, Shuo Zhang, Qiyue Wang, Jing Yang, FanLam Ng, Xingjian Liu, Yu Qiu, Rui Zhu, Huimei Wang, Christian Wolf, Yanxia Zhang, Zhi-Ying Huo, Y. L. Ai, Qinchun Ma, Xiaotong Feng and R. J. Bouwens
The Astrophysical Journal Supplement Series 271 (2) 54 (2024)
https://doi.org/10.3847/1538-4365/ad2ae6

A Targeted Search for Variable Gravitationally Lensed Quasars

William Sheu, Xiaosheng Huang, Aleksandar Cikota, Nao Suzuki, Antonella Palmese, David J. Schlegel and Christopher Storfer
The Astrophysical Journal 973 (1) 24 (2024)
https://doi.org/10.3847/1538-4357/ad5dad

INSPIRE: INvestigating Stellar Population In RElics – VII. The local environment of ultra-compact massive galaxies

Diana Scognamiglio, Chiara Spiniello, Mario Radovich, Crescenzo Tortora, Nicola R Napolitano, Rui Li, Matteo Maturi, Michalina Maksymowicz-Maciata, Michele Cappellari, Magda Arnaboldi, Davide Bevacqua, Lodovico Coccato, Giuseppe D’Ago, Hai-Cheng Feng, Anna Ferré-Mateu, Johanna Hartke, Ignacio Martín-Navarro and Claudia Pulsoni
Monthly Notices of the Royal Astronomical Society 534 (2) 1597 (2024)
https://doi.org/10.1093/mnras/stae2185

Machine Learning–based Search of High-redshift Quasars

Guangping 广平 Ye 叶, Huanian 华年 Zhang 张 and Qingwen 庆文 Wu 吴
The Astrophysical Journal Supplement Series 275 (1) 19 (2024)
https://doi.org/10.3847/1538-4365/ad79ee

DeepGraviLens: a multi-modal architecture for classifying gravitational lensing data

Nicolò Oreste Pinciroli Vago and Piero Fraternali
Neural Computing and Applications 35 (26) 19253 (2023)
https://doi.org/10.1007/s00521-023-08766-9

Survey of gravitationally lensed objects in HSC imaging (SuGOHI) – IX. Discovery of strongly lensed quasar candidates

James H H Chan, Kenneth C Wong, Xuheng Ding, Dani Chao, I-Non Chiu, Anton T Jaelani, Issha Kayo, Anupreeta More, Masamune Oguri and Sherry H Suyu
Monthly Notices of the Royal Astronomical Society 527 (3) 6253 (2023)
https://doi.org/10.1093/mnras/stad2953

A Survey for High-redshift Gravitationally Lensed Quasars and Close Quasar Pairs. I. The Discoveries of an Intermediately Lensed Quasar and a Kiloparsec-scale Quasar Pair at z ∼ 5

Minghao Yue, Xiaohui Fan, Jinyi Yang and Feige Wang
The Astronomical Journal 165 (5) 191 (2023)
https://doi.org/10.3847/1538-3881/acc2be

Streamlined lensed quasar identification in multiband images via ensemble networks

Irham Taufik Andika, Sherry H. Suyu, Raoul Cañameras, Alejandra Melo, Stefan Schuldt, Yiping Shu, Anna-Christina Eilers, Anton Timur Jaelani and Minghao Yue
Astronomy & Astrophysics 678 A103 (2023)
https://doi.org/10.1051/0004-6361/202347332

X-ray absorption and reprocessing in the z ∼ 2.5 lensed quasar 2MASS J1042+1641

D J Walton, M T Reynolds, D Stern, M Brightman and C Lemon
Monthly Notices of the Royal Astronomical Society 516 (4) 5997 (2022)
https://doi.org/10.1093/mnras/stac2554

Galaxy Light Profile Convolutional Neural Networks (GaLNets). I. Fast and Accurate Structural Parameters for Billion-galaxy Samples

R. Li, N. R. Napolitano, N. Roy, C. Tortora, F. La Barbera, A. Sonnenfeld, C. Qiu and S. Liu
The Astrophysical Journal 929 (2) 152 (2022)
https://doi.org/10.3847/1538-4357/ac5ea0

Detecting gravitational lenses using machine learning: exploring interpretability and sensitivity to rare lensing configurations

Joshua Wilde, Stephen Serjeant, Jane M Bromley, et al.
Monthly Notices of the Royal Astronomical Society 512 (3) 3464 (2022)
https://doi.org/10.1093/mnras/stac562

Gaia GraL: Gaia DR2 Gravitational Lens Systems. VII. XMM-Newton Observations of Lensed Quasars

Thomas Connor, Daniel Stern, Alberto Krone-Martins, S. G. Djorgovski, Matthew J. Graham, Dominic J. Walton, Ludovic Delchambre, Christine Ducourant, Ramachrisna Teixeira, Jean-François Le Campion, Jakob Sebastian den Brok, Dougal Dobie, Laurent Galluccio, Priyanka Jalan, Sergei A. Klioner, Jonas Klüter, Ashish A. Mahabal, Vibhore Negi, Anna Nierenberg, Quentin Petit, Sergio Scarano Jr, Eric Slezak, Dominique Sluse, Carolina Spíndola-Duarte, Jean Surdej and Joachim Wambsganss
The Astrophysical Journal 927 (1) 45 (2022)
https://doi.org/10.3847/1538-4357/ac4476

Machine learning technique for morphological classification of galaxies from SDSS. II. The image-based morphological catalogs of galaxies at 0.02 I. B. VAVILOVA, V. KHRAMTSOV, D. V. DOBRYCHEVA, et al.
Kosmìčna nauka ì tehnologìâ 28 (1) 03 (2022)
https://doi.org/10.15407/knit2022.01.003

Machine learning prediction of lignin content in poplar with Raman spectroscopy

Wenli Gao, Liang Zhou, Shengquan Liu, Ying Guan, Hui Gao and Bin Hui
Bioresource Technology 348 126812 (2022)
https://doi.org/10.1016/j.biortech.2022.126812

Machine learning technique for morphological classification of galaxies from the SDSS. III. The CNN image-based inference of detailed features

V. KHRAMTSOV, I. B. VAVILOVA, D. V. DOBRYCHEVA, et al.
Kosmìčna nauka ì tehnologìâ 28 (5) 27 (2022)
https://doi.org/10.15407/knit2022.05.027

Galaxy Spectra Neural Networks (GaSNets). I. Searching for Strong Lens Candidates in eBOSS Spectra Using Deep Learning

Fucheng Zhong, Rui Li and Nicola R. Napolitano
Research in Astronomy and Astrophysics 22 (6) 065014 (2022)
https://doi.org/10.1088/1674-4527/ac68c4

Real-time hard-rock tunnel prediction model for rock mass classification using CatBoost integrated with Sequential Model-Based Optimization

Yin Bo, Quansheng Liu, Xing Huang and Yucong Pan
Tunnelling and Underground Space Technology 124 104448 (2022)
https://doi.org/10.1016/j.tust.2022.104448

Machine learning technique for morphological classification of galaxies from the SDSS

I. B. Vavilova, D. V. Dobrycheva, M. Yu. Vasylenko, et al.
Astronomy & Astrophysics 648 A122 (2021)
https://doi.org/10.1051/0004-6361/202038981

Photometric selection and redshifts for quasars in the Kilo-Degree Survey Data Release 4

S. J. Nakoneczny, M. Bilicki, A. Pollo, et al.
Astronomy & Astrophysics 649 A81 (2021)
https://doi.org/10.1051/0004-6361/202039684

Gaia GraL: Gaia DR2 Gravitational Lens Systems. VI. Spectroscopic Confirmation and Modeling of Quadruply Imaged Lensed Quasars

D. Stern, S. G. Djorgovski, A. Krone-Martins, D. Sluse, L. Delchambre, C. Ducourant, R. Teixeira, J. Surdej, C. Boehm, J. den Brok, D. Dobie, A. Drake, L. Galluccio, M. J. Graham, P. Jalan, J. Klüter, J.-F. Le Campion, A. Mahabal, F. Mignard, T. Murphy, A. Nierenberg, S. Scarano Jr., J. Simon, E. Slezak, C. Spindola-Duarte and J. Wambsganss
The Astrophysical Journal 921 (1) 42 (2021)
https://doi.org/10.3847/1538-4357/ac0f04

A comparative analysis of gradient boosting algorithms

Candice Bentéjac, Anna Csörgő and Gonzalo Martínez-Muñoz
Artificial Intelligence Review 54 (3) 1937 (2021)
https://doi.org/10.1007/s10462-020-09896-5

High-quality Strong Lens Candidates in the Final Kilo-Degree Survey Footprint

R. Li, N. R. Napolitano, C. Spiniello, C. Tortora, K. Kuijken, L. V. E. Koopmans, P. Schneider, F. Getman, L. Xie, L. Long, W. Shu, G. Vernardos, Z. Huang, G. Covone, A. Dvornik, C. Heymans, H. Hildebrandt, M. Radovich and A. H. Wright
The Astrophysical Journal 923 (1) 16 (2021)
https://doi.org/10.3847/1538-4357/ac2df0

Random Forests as a Viable Method to Select and Discover High-redshift Quasars

Lukas Wenzl, Jan-Torge Schindler, Xiaohui Fan, Irham Taufik Andika, Eduardo Bañados, Roberto Decarli, Knud Jahnke, Chiara Mazzucchelli, Masafusa Onoue, Bram P. Venemans, Fabian Walter and Jinyi Yang
The Astronomical Journal 162 (2) 72 (2021)
https://doi.org/10.3847/1538-3881/ac0254

New High-quality Strong Lens Candidates with Deep Learning in the Kilo-Degree Survey

R. Li, N. R. Napolitano, C. Tortora, C. Spiniello, L. V. E. Koopmans, Z. Huang, N. Roy, G. Vernardos, S. Chatterjee, B. Giblin, F. Getman, M. Radovich, G. Covone and K. Kuijken
The Astrophysical Journal 899 (1) 30 (2020)
https://doi.org/10.3847/1538-4357/ab9dfa

Deep Convolutional Neural Networks models for the binary morphological classification of SDSS-galaxies

M. Vasylenko, D. Dobrycheva, V. Khramtsov and I. Vavilova
Communications of the Byurakan Astrophysical Observatory 354 (2020)
https://doi.org/10.52526/25792776-2020.67.2-354