Open Access
Issue |
A&A
Volume 696, April 2025
|
|
---|---|---|
Article Number | A216 | |
Number of page(s) | 16 | |
Section | Numerical methods and codes | |
DOI | https://doi.org/10.1051/0004-6361/202554072 | |
Published online | 25 April 2025 |
- Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. 2019, in The 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2623 [CrossRef] [Google Scholar]
- Arras, P., Bester, H. L., Perley, R. A., et al. 2021, A&A, 646, A84 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Bacon, D. J., Refregier, A. R., & Ellis, R. S. 2000, MNRAS, 318, 625 [NASA ADS] [CrossRef] [Google Scholar]
- Battye, R. A., Brown, M. L., Casey, C. M., et al. 2020, MNRAS, 495, 1706 [Google Scholar]
- Bengtsson Bernander, K., Sintorn, I.-M., Strand, R., & Nyström, I. 2024, NatSR, 14, 14995 [Google Scholar]
- Bergstra, J., Bardenet, R., Bengio, Y., & Kégl, B. 2011, in Algorithms for Hyper-Parameter Optimization in NeurIPS [Google Scholar]
- Bernstein, G. M., & Armstrong, R. 2014, MNRAS, 438, 1880 [NASA ADS] [CrossRef] [Google Scholar]
- Bonaldi, A., Bonato, M., Galluzzi, V., et al. 2018, MNRAS, 482, 2 [Google Scholar]
- Braun, R., Bonaldi, A., Bourke, T., Keane, E., & Wagg, J. 2019, arXiv e-prints [arXiv:1912.12699] [Google Scholar]
- Briggs, D. S. 1995, PhD thesis, New Mexico Institute of Mining and Technology [Google Scholar]
- Burke, C. J., Aleo, P. D., Chen, Y.-C., et al. 2019, MNRAS, 490, 3952 [NASA ADS] [CrossRef] [Google Scholar]
- CASA Team, Bean, B., Bhatnagar, S., et al. 2022, PASP, 134, 114501 [NASA ADS] [CrossRef] [Google Scholar]
- Cesa, G., Lang, L., & Weiler, M. 2022, in A Program to Build E(N)-Equivariant Steerable CNNs in ICLR [Google Scholar]
- Chang, T., Refregier, A., & Helfand, D. J. 2004, ApJ, 617, 794 [Google Scholar]
- Chidester, B., Zhou, T., Do, M. N., & Ma, J. 2019, Bioinformatics, 35, 1530 [Google Scholar]
- Cohen, T., & Welling, M. 2016, in ICML, 2990 [Google Scholar]
- Cornwell, T. J. 2008, ISTSP, 2, 793 [Google Scholar]
- Fenech Conti, I., Herbonnet, R., Hoekstra, H., et al. 2017, MNRAS, 467, 1627 [NASA ADS] [Google Scholar]
- Goodfellow, I., Bengio, Y., & Courville, A. 2016, Deep Learning (MIT Press) [Google Scholar]
- Harrison, I., Brown, M. L., Tunbridge, B., et al. 2020, MNRAS, 495, 1737 [Google Scholar]
- Heymans, C., Van Waerbeke, L., Bacon, D., et al. 2006, MNRAS, 368, 1323 [Google Scholar]
- Heymans, C., Van Waerbeke, L., Miller, L., et al. 2012, MNRAS, 427, 146 [Google Scholar]
- Högbom, J. A. 1974, A&AS, 15, 417 [Google Scholar]
- Hurault, S., Chambolle, A., Leclaire, A., & Papadakis, N. 2024, JMIV, 66, 616 [Google Scholar]
- Huterer, D., Takada, M., Bernstein, G., & Jain, B. 2006, MNRAS, 366, 101 [Google Scholar]
- Hutter, F., Hoos, H., & Leyton-Brown, K. 2014, in ICML, 754 [Google Scholar]
- Jansen, H., Tewes, M., Schrabback, T., et al. 2024, A&A, 683, A240 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Kacprzak, T., Zuntz, J., Rowe, B., et al. 2012, MNRAS, 427, 2711 [Google Scholar]
- Kaiser, N., Squires, G., & Broadhurst, T. 1995, ApJ, 449, 460 [Google Scholar]
- Kilbinger, M. 2015, RPPh, 78, 086901 [Google Scholar]
- Kingma, D. P., & Ba, J. 2015, in Adam: A Method for Stochastic Optimization in ICLR [Google Scholar]
- Kingma, D. P., & Welling, M. 2019, Found. Trends Mach. Learn., 12, 307 [Google Scholar]
- Lafarge, M. W., Bekkers, E. J., Pluim, J. P. W., Duits, R., & Veta, M. 2020, Med. Image Anal., 68, 101849 [Google Scholar]
- Lines, N. E. P., Font-Quer Roset, J., & Scaife, A. M. M. 2024, RASTI, 3, 347 [Google Scholar]
- Liu, J., Asif, M. S., Wohlberg, B., & Kamilov, U. S. 2021, in NeurIPS, 453, 13 [Google Scholar]
- Mandelbaum, R., Rowe, B., Bosch, J., et al. 2014, ApJS, 212, 5 [Google Scholar]
- Massey, R., Heymans, C., Bergé, J., et al. 2007, MNRAS, 376, 13 [Google Scholar]
- Massey, R., Hoekstra, H., Kitching, T., et al. 2013, MNRAS, 429, 661 [Google Scholar]
- Melchior, P., Moolekamp, F., Jerdee, M., et al. 2018, A&C, 24, 129 [Google Scholar]
- Merz, G., Liu, Y., Burke, C. J., et al. 2023, MNRAS, 526, 1122 [NASA ADS] [CrossRef] [Google Scholar]
- Müller, H., & Lobanov, A. P. 2023, A&A, 672, A26 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Nikolova, M., & Ng, M. K. P. 2005, SJSC, 27, 937 [Google Scholar]
- Ongie, G., Jalal, A., Metzler, C. A., et al. 2020, IEEE J. Sel. Areas Inform.Therory, 1, 39 [Google Scholar]
- Pandya, S., Patel, P. O. F., & Blazek, J. 2023, arXiv e-prints [arXiv:2311.01500] [Google Scholar]
- Parikh, N., & Boyd, S. 2014, Proximal Algorithms (Now Foundations and Trends) [CrossRef] [Google Scholar]
- Paszke, A., Gross, S., Massa, F., et al. 2019, in NeurIPS, 721, 12 [Google Scholar]
- Patel, P., Bacon, D. J., Beswick, R. J., Muxlow, T. W. B., & Hoyle, B. 2010, MNRAS, 401, 2572 [Google Scholar]
- Patel, P., Abdalla, F. B., Bacon, D. J., et al. 2014, MNRAS, 444, 2893 [Google Scholar]
- Patel, P., Harrison, I., Makhathini, S., et al. 2015, in Advancing Astrophysics with the Square Kilometre Array (AASKA14), 30 [Google Scholar]
- Paulin-Henriksson, S., Amara, A., Voigt, L., Refregier, A., & Bridle, S. L. 2008, A&A, 484, 67 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Paulin-Henriksson, S., Refregier, A., & Amara, A. 2009, A&A, 500, 647 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Refregier, A., Kacprzak, T., Amara, A., Bridle, S., & Rowe, B. 2012, MNRAS, 425, 1951 [Google Scholar]
- Ribli, D., Dobos, L., & Csabai, I. 2019, MNRAS, 489, 4847 [NASA ADS] [CrossRef] [Google Scholar]
- Rivi, M., & Miller, L. 2018, MNRAS, 476, 2053 [Google Scholar]
- Rivi, M., & Miller, L. 2022, A&C, 39, 100574 [Google Scholar]
- Rivi, M., & Miller, L. 2022, RadioLensfit: Radio weak lensing shear measurement in the visibility domain, Astrophysics Source Code Library [record ascl:2208.019] [Google Scholar]
- Rivi, M., Miller, L., Makhathini, S., & Abdalla, F. B. 2016, MNRAS, 463, 1881 [Google Scholar]
- Rivi, M., Lochner, M., Balan, S. T., Harrison, I., & Abdalla, F. B. 2019, MNRAS, 482, 1096 [Google Scholar]
- Rodriguez Salas, R., Dokládal, P., & Dokladalova, E. 2021, J. Vis. Commun. Image Repr., 75, 103054 [Google Scholar]
- Ronneberger, O., Fischer, P., & Brox, T. 2015, in MICCAI, 234 [Google Scholar]
- Rowe, B. T., Jarvis, M., Mandelbaum, R., et al. 2015, A&C, 10, 121 [Google Scholar]
- Scaife, A. M. M., & Porter, F. 2021, MNRAS, 503, 2369 [CrossRef] [Google Scholar]
- Seitz, C., & Schneider, P. 1997, A&A, 318, 687 [NASA ADS] [Google Scholar]
- Sérsic, J. L. 1963, Bol. Asoc. Argentina Astron. Plata Argentina, 6, 41 [Google Scholar]
- Sheldon, E. S., & Huff, E. M. 2017, ApJ, 841, 24 [NASA ADS] [CrossRef] [Google Scholar]
- Sun, Y., Wohlberg, B., & Kamilov, U. S. 2019, IEEE Trans. Comp. Imaging, 5, 395 [Google Scholar]
- Tachella, J., Chen, D., Hurault, S., & Terris, M. 2023, DeepInverse: a Pytorch library for imaging with deep learning [Google Scholar]
- Terris, M., Dabbech, A., Tang, C., & Wiaux, Y. 2022, MNRAS, 518, 604 [NASA ADS] [CrossRef] [Google Scholar]
- Tewes, M., Kuntzer, T., Nakajima, R., et al. 2019, A&A, 621, A36 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Thompson, A. R., Moran, J. M., & Swenson, George W., J. 2017, Interferometry and Synthesis in Radio Astronomy, 3rd edn. (Springer Open) [CrossRef] [Google Scholar]
- Tripathi, P., Wang, S., Prunet, S., & Ferrari, A. 2024, in EUSIPCO (IEEE), 2377 [Google Scholar]
- Tyson, J. A., Valdes, F., & Wenk, R. A. 1990, ApJ, 349, L1 [CrossRef] [Google Scholar]
- Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P.-A. 2008, in ICML [Google Scholar]
- Voigt, L. M., & Bridle, S. L. 2010, MNRAS, 404, 458 [Google Scholar]
- Weiler, M., & Cesa, G. 2019, in NeurIPS [Google Scholar]
- Weltman, A., Bull, P., Camera, S., et al. 2020, PASA, 37, e002 [Google Scholar]
- Wittman, D. M., Tyson, J. A., Kirkman, D., Dell’Antonio, I., & Bernstein, G. 2000, Nature, 405, 143 [NASA ADS] [CrossRef] [Google Scholar]
- Xu, X., Sun, Y., Liu, J., Wohlberg, B., & Kamilov, U. S. 2020, ISPL, 27, 1280 [Google Scholar]
- Zhang, J., Luo, W., & Foucaud, S. 2015, J. Cosmology Astropart. Phys., 2015, 024 [CrossRef] [Google Scholar]
- Zhang, K., Zuo, W., Chen, Y., Meng, D., & Zhang, L. 2017, ITIP, 26, 3142 [Google Scholar]
- Zhang, K., Li, Y., Zuo, W., et al. 2020, ITPAM, 44, 6360 [Google Scholar]
- Zhang, Z., Shan, H., Li, N., et al. 2024, A&A, 683, A209 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Zuntz, J., Kacprzak, T., Voigt, L., et al. 2013, MNRAS, 434, 1604 [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.