Open Access
Issue
A&A
Volume 695, March 2025
Article Number A57
Number of page(s) 12
Section Stellar structure and evolution
DOI https://doi.org/10.1051/0004-6361/202453268
Published online 07 March 2025
  1. Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. 2019, Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery and data mining, 2623 [CrossRef] [Google Scholar]
  2. Anderson, T. W., & Darling, D. A. 1954, J. Am. Stat. Assoc., 49, 765 [Google Scholar]
  3. Andrae, R., Fouesneau, M., Creevey, O., et al. 2018, A&A, 616, A8 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  4. Angulo, C., Arnould, M., Rayet, M., et al. 1999, Nucl. Phys. A, 656, 3 [Google Scholar]
  5. Angus, R., Aigrain, S., Foreman-Mackey, D., & McQuillan, A. 2015, MNRAS, 450, 1787 [Google Scholar]
  6. Appourchaux, T., Antia, H., Ball, W., et al. 2015, A&A, 582, A25 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  7. Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, ARA&A, 47, 481 [NASA ADS] [CrossRef] [Google Scholar]
  8. Barnes, S. A., Weingrill, J., Fritzewski, D., Strassmeier, K. G., & Platais, I. 2016, ApJ, 823, 16 [Google Scholar]
  9. Baron, D. 2019, ArXiv e-print [arXiv:1904.07248] [Google Scholar]
  10. Bazot, M., Bourguignon, S., & Christensen-Dalsgaard, J. 2012, MNRAS, 427, 1847 [NASA ADS] [CrossRef] [Google Scholar]
  11. Bellinger, E. P., Angelou, G. C., Hekker, S., et al. 2016, ApJ, 830, 31 [Google Scholar]
  12. Berger, T. A., Huber, D., Gaidos, E., van Saders, J. L., & Weiss, L. M. 2020, AJ, 160, 108 [NASA ADS] [CrossRef] [Google Scholar]
  13. Boyd, S. P., & Vandenberghe, L. 2004, Convex optimization (Cambridge University Press) [CrossRef] [Google Scholar]
  14. Breiman, L. 1996, Mach. Learn., 24, 49 [Google Scholar]
  15. Breiman, L. 2001, Mach. Learn., 45, 5 [Google Scholar]
  16. Breiman, L. 2017, Classification and regression trees (Routledge) [CrossRef] [Google Scholar]
  17. Buchhave, L. A., & Latham, D. W. 2015, ApJ, 808, 187 [Google Scholar]
  18. Campante, T. L., Barclay, T., Swift, J. J., et al. 2015, ApJ, 799, 170 [Google Scholar]
  19. Campante, T. L., Veras, D., North, T. S., et al. 2017, MNRAS, 469, 1360 [NASA ADS] [CrossRef] [Google Scholar]
  20. Casagrande, L., Portinari, L., Glass, I., et al. 2014, MNRAS, 439, 2060 [CrossRef] [Google Scholar]
  21. Chaplin, W., Basu, S., Huber, D., et al. 2013, ApJS, 210, 1 [NASA ADS] [CrossRef] [Google Scholar]
  22. Chen, T., & Guestrin, C. 2016, Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, 785 [Google Scholar]
  23. Chen, D.-C., Xie, J.-W., Zhou, J.-L., et al. 2023, Proc. Nat. Acad. Sci., 120, e2304179120 [NASA ADS] [CrossRef] [Google Scholar]
  24. Claytor, Z. R., van Saders, J. L., Santos, A. R., et al. 2020, ApJ, 888, 43 [CrossRef] [Google Scholar]
  25. Coelho, H., Chaplin, W., Basu, S., et al. 2015, MNRAS, 451, 3011 [CrossRef] [Google Scholar]
  26. Cox, J. P., & Giuli, R. T. 1968, Principles of Stellar Structure: Physical Principles (Gordon and Breach), 1 [Google Scholar]
  27. Cyburt, R. H., Fields, B. D., & Olive, K. A. 2003, Phys. Lett. B, 567, 227 [NASA ADS] [CrossRef] [Google Scholar]
  28. Da Silva, R., de Mello, G. P., Milone, A., et al. 2012, A&A, 542, A84 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  29. Dawson, R. I., & Johnson, J. A. 2018, ARA&A, 56, 175 [Google Scholar]
  30. Deal, M., Cunha, M., Keszthelyi, Z., Perraut, K., & Holdsworth, D. L. 2021, A&A, 650, A125 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  31. Des Etangs, A. L., & Lissauer, J. J. 2022, New Astron. Rev., 94, 101641 [CrossRef] [Google Scholar]
  32. Espinoza-Rojas, F., Chanamé, J., Jofré, P., & Casamiquela, L. 2021, ApJ, 920, 94 [NASA ADS] [CrossRef] [Google Scholar]
  33. Feltzing, S., Howes, L. M., McMillan, P. J., & Stonkutė, E. 2016, MNRAS, 465, L109 [NASA ADS] [Google Scholar]
  34. Ferguson, J. W., Alexander, D. R., Allard, F., et al. 2005, ApJ, 623, 585 [Google Scholar]
  35. Gai, N., Basu, S., Chaplin, W. J., & Elsworth, Y. 2011, ApJ, 730, 63 [Google Scholar]
  36. Gaia Collaboration (Bailer-Jones, C., et al.) 2023, A&A, 674, A41 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  37. Green, G. 2018, J. Open Source Soft., 3, 695 [NASA ADS] [CrossRef] [Google Scholar]
  38. Gruberbauer, M., Guenther, D. B., & Kallinger, T. 2012, ApJ, 749, 109 [CrossRef] [Google Scholar]
  39. Hamer, J. H., & Schlaufman, K. C. 2019, AJ, 158, 190 [Google Scholar]
  40. Hara, N. C., & Ford, E. B. 2023, Annual Review of Statistics and Its Application, 10, 623 [NASA ADS] [CrossRef] [Google Scholar]
  41. Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. 2009, The elements of statistical learning: data mining, inference, and prediction (Springer), 2 [Google Scholar]
  42. Herwig, F. 2000, A&A, 360, 952 [NASA ADS] [Google Scholar]
  43. Huber, D., Chaplin, W. J., Christensen-Dalsgaard, J., et al. 2013, ApJ, 767, 127 [Google Scholar]
  44. Iglesias, C. A., & Rogers, F. J. 1996, ApJ, 464, 943 [NASA ADS] [CrossRef] [Google Scholar]
  45. Imbriani, G., Costantini, H., Formicola, A., et al. 2005, Eur. Phys. J. A-Hadrons Nucl., 25, 455 [Google Scholar]
  46. Kolmogorov, A. 1933, Giorn. Ist. Ital. Attuari, 4, 1 [Google Scholar]
  47. Krishna Swamy, K. 1966, ApJ, 145, 174 [CrossRef] [Google Scholar]
  48. Lawson, C. L., & Hanson, R. 1995, Solving least squares problems (SIAM) [CrossRef] [Google Scholar]
  49. Lindegren, L. 2018, Gaia Data Processing and Analysis Consortium, Tech. Rep., GAIA-C3-TN-LU-LL-124 [Google Scholar]
  50. Liu, W. M., & Chaboyer, B. 2000, ApJ, 544, 818 [NASA ADS] [CrossRef] [Google Scholar]
  51. Lund, M. N., & Reese, D. R. 2017, ArXiv e-print [arXiv:1711.01896] [Google Scholar]
  52. Lund, M. N., Aguirre, V. S., Davies, G. R., et al. 2017, ApJ, 835, 172 [Google Scholar]
  53. Mamajek, E. E., & Hillenbrand, L. A. 2008, ApJ, 687, 1264 [Google Scholar]
  54. Mamajek, E., Torres, G., Prsa, A., et al. 2015, ArXiv e-print [arXiv:1510.06262] [Google Scholar]
  55. Mayor, M., & Queloz, D. 1995, Nature, 378, 355 [Google Scholar]
  56. McKinney, W., van der Walt, S., & Millman, J. 2010, Proceedings of the 9th Python in Science Conference [Google Scholar]
  57. Meibom, S., Barnes, S. A., Platais, I., et al. 2015, Nature, 517, 589 [Google Scholar]
  58. Mena, E. D., Moya, A., Adibekyan, V., et al. 2019, A&A, 624, A78 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  59. Metcalfe, T. S., Creevey, O. L., & Christensen-Dalsgaard, J. 2009, ApJ, 699, 373 [Google Scholar]
  60. Miyazaki, S., & Masuda, K. 2023, AJ, 166, 209 [NASA ADS] [CrossRef] [Google Scholar]
  61. Moedas, N., Nsamba, B., & Clara, M. T. 2020, Dynamics of the Sun and Stars: Honoring the Life and Work of Michael J. Thompson (Thompson: Springer), 259 [NASA ADS] [CrossRef] [Google Scholar]
  62. Moedas, N., Bossini, D., Deal, M., & Cunha, M. S. 2024, A&A, 684, A113 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  63. Mortier, A., Santos, N., Sousa, S., et al. 2013, A&A, 558, A106 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  64. Moya, A., & López-Sastre, R. J. 2022, A&A, 663, A112 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  65. Moya, A., Zuccarino, F., Chaplin, W. J., & Davies, G. R. 2018, ApJS, 237, 21 [Google Scholar]
  66. Moya, A., Sarro, L. M., Delgado-Mena, E., et al. 2022, A&A, 660, A15 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  67. Nissen, P. E. 2015, A&A, 579, A52 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  68. Nissen, P. 2016, A&A, 593, A65 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  69. Noyes, R., Hartmann, L., Baliunas, S., Duncan, D., & Vaughan, A. 1984, ApJ, 279, 763 [NASA ADS] [CrossRef] [Google Scholar]
  70. Nsamba, B., Campante, T., Monteiro, M., et al. 2018, MNRAS, 477, 5052 [NASA ADS] [CrossRef] [Google Scholar]
  71. Nsamba, B., Campante, T. L., Monteiro, M. J., Cunha, M. S., & Sousa, S. G. 2019, Front. Astron. Space Sci., 6, 25 [NASA ADS] [CrossRef] [Google Scholar]
  72. Nsamba, B., Weiss, A., & Kamulali, J. 2025, MNRAS, 536, 2558 [Google Scholar]
  73. Paxton, B., Schwab, J., Bauer, E. B., et al. 2018, ApJS, 234, 34 [NASA ADS] [CrossRef] [Google Scholar]
  74. Paxton, B., Smolec, R., Schwab, J., et al. 2019, ApJS, 243, 10 [Google Scholar]
  75. Pedregosa, F., Varoquaux, G., Gramfort, A., et al. 2011, J. Mach. Learn. Res., 12, 2825 [Google Scholar]
  76. Perryman, M. 2018, The exoplanet handbook (Cambridge University Press) [CrossRef] [Google Scholar]
  77. Pijpers, F. P. 2003, A&A, 400, 241 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  78. Pinsonneault, M. H., An, D., Molenda-Żakowicz, J., et al. 2012, ApJS, 199, 30 [Google Scholar]
  79. Pinsonneault, M. H., Elsworth, Y., Epstein, C., et al. 2014, ApJS, 215, 19 [Google Scholar]
  80. Planck, M. 1900, Entropie, 144, 164 [Google Scholar]
  81. Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin, A. 2018, Advances in neural information processing systems, 31 [Google Scholar]
  82. Pulone, L., & Scaramella, R. 1997, Neural Nets WIRN VIETRI-96: Proceedings of the 8th Italian Workshop on Neural Nets, Vietri sul Mare, Salerno, Italy, 23–25 May 1996 (Springer), 231 [CrossRef] [Google Scholar]
  83. Ramírez, I., Melendez, J., & Asplund, M. 2009, A&A, 508, L17 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  84. Rasio, F. A., & Ford, E. B. 1996, Science, 274, 954 [Google Scholar]
  85. Rendle, B. M., Buldgen, G., Miglio, A., et al. 2019, MNRAS, 484, 771 [Google Scholar]
  86. Rogers, F., & Nayfonov, A. 2002, ApJ, 576, 1064 [NASA ADS] [CrossRef] [Google Scholar]
  87. Sandage, A., Lubin, L. M., & VandenBerg, D. A. 2003, PASP, 115, 1187 [NASA ADS] [CrossRef] [Google Scholar]
  88. Santos, N., Sousa, S., Mortier, A., et al. 2013, A&A, 556, A150 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  89. Schlafly, E. F., & Finkbeiner, D. P. 2011, ApJ, 737, 103 [Google Scholar]
  90. Scholz, F. W., & Stephens, M. A. 1987, J. Am. Stat. Assoc., 82, 918 [Google Scholar]
  91. Seager, S., & Mallen-Ornelas, G. 2003, ApJ, 585, 1038 [Google Scholar]
  92. Serenelli, A., Johnson, J., Huber, D., et al. 2017, ApJS, 233, 23 [Google Scholar]
  93. Silva Aguirre, V., Ballot, J., Serenelli, A., & Weiss, A. 2011, A&A, 529, A63 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  94. Silva Aguirre, V., Christensen-Dalsgaard, J., Chaplin, W., et al. 2013, ApJ, 769, 2 [Google Scholar]
  95. Silva Aguirre, V., Davies, G., Basu, S., et al. 2015, MNRAS, 452, 2127 [NASA ADS] [CrossRef] [Google Scholar]
  96. Silva Aguirre, V., Lund, M. N., Antia, H., et al. 2017, ApJ, 835, 173 [NASA ADS] [CrossRef] [Google Scholar]
  97. Smirnov, N. 1939, NS, 6, 3 [Google Scholar]
  98. Soderblom, D. R. 2010, ARA&A, 48, 581 [Google Scholar]
  99. Soderblom, D. 2015, Nature, 517, 557 [NASA ADS] [CrossRef] [Google Scholar]
  100. Student, 1908, Biometrika, 6, 1 [CrossRef] [Google Scholar]
  101. Thoul, A. A., Bahcall, J. N., & Loeb, A. 1994, ApJ, 421, 828 [Google Scholar]
  102. Titarenko, A., Recio-Blanco, A., de Laverny, P., Hayden, M., & Guiglion, G. 2019, A&A, 622, A59 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  103. Torres, G., Winn, J. N., & Holman, M. J. 2008, ApJ, 677, 1324 [Google Scholar]
  104. Torres, G., Andersen, J., & Giménez, A. 2010, A&ARv, 18, 67 [Google Scholar]
  105. Van Der Walt, S., Colbert, S. C., & Varoquaux, G. 2011, Comput. Sci. Eng., 13, 22 [Google Scholar]
  106. VandenBerg, D. A., Brogaard, K., Leaman, R., & Casagrande, L. 2013, ApJ, 775, 134 [Google Scholar]
  107. Verma, K., Hanasoge, S., Bhattacharya, J., Antia, H., & Krishnamurthi, G. 2016, MNRAS, 461, 4206 [NASA ADS] [CrossRef] [Google Scholar]
  108. Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020, Nat. Methods, 17, 261 [Google Scholar]
  109. Wehenkel, L., Ernst, D., & Geurts, P. 2006, Robust Methods for Power System State Estimation and Load Forecasting [Google Scholar]
  110. Wolpert, D. H. 1992, Neural Net., 5, 241 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.