Open Access
Issue
A&A
Volume 691, November 2024
Article Number A271
Number of page(s) 13
Section Stellar structure and evolution
DOI https://doi.org/10.1051/0004-6361/202450274
Published online 19 November 2024
  1. Ali, M. 2020, PyCaret: An Open Source, Low-code Machine Learning Library in Python, https://www.pycaret.org [Google Scholar]
  2. Antoniucci, S., Giannini, T., Li Causi, G., & Lorenzetti, D. 2014, ApJ, 782, 51 [Google Scholar]
  3. Ball, N. M., & Brunner, R. J. 2010, Int. J. Mod. Phys. D, 19, 1049 [Google Scholar]
  4. Baron, D. 2019, ArXiv e-prints [arXiv:1904.07248] [Google Scholar]
  5. Bayo, A., Rodrigo, C., Barrado Y Navascués, D., et al. 2008, A&A, 492, 277 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  6. Beichman, C. A. 1988, Astrophys. Lett. Commun., 27, 67 [Google Scholar]
  7. Bergstra, J., & Bengio, Y. 2012, J. Mach. Learn. Res., 13, 281 [Google Scholar]
  8. Bishop, C. 1994, Mixture Density Networks, Tech. rep., Aston University [Google Scholar]
  9. Bishop, C. M. 2007, Pattern Recognition and Machine Learning, 1st edn. (New York: Springer) [Google Scholar]
  10. Breiman, L. 2001, Mach. Learn., 45, 5 [Google Scholar]
  11. Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. 1984, Classification and Regression Trees (Boca Raton: Chapman and Hall/CRC) [Google Scholar]
  12. Carey, S. J., Noriega-Crespo, A., Mizuno, D. R., et al. 2009, PASP, 121, 76 [Google Scholar]
  13. Chandrashekar, G., & Sahin, F. 2014, Compu. Electr. Eng., 40, 16 [CrossRef] [Google Scholar]
  14. Clarke, A. O., Scaife, A. M. M., Greenhalgh, R., & Griguta, V. 2020, A&A, 639, A84 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  15. Cutri, R. M., Wright, E. L., Conrow, T., et al. 2013, Explanatory Supplement to the AllWISE Data Release Products [Google Scholar]
  16. Debes, J. H., Hoard, D. W., Kilic, M., et al. 2011, ApJ, 729, 4 [NASA ADS] [CrossRef] [Google Scholar]
  17. Dennihy, E., Farihi, J., Gentile Fusillo, N. P., & Debes, J. H. 2020, ApJ, 891, 97 [CrossRef] [Google Scholar]
  18. Dobbels, W., Baes, M., Viaene, S., et al. 2020, A&A, 634, A57 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  19. Duan, T., Avati, A., Ding, D. Y., et al. 2020, arXiv e-prints [arXiv:1910.03225] [Google Scholar]
  20. Efron, B., & Tibshirani, R. J. 1993, An Introduction to the Bootstrap, Monographs on Statistics and Applied Probability No. 57 (Boca Raton: Chapman& Hall/CRC) [Google Scholar]
  21. Fluke, C. J., & Jacobs, C. 2020, WIREs Data Mining and Knowledge Discovery, 10, e1349 [CrossRef] [Google Scholar]
  22. Gaia Collaboration (Brown, A. G. A., et al.) 2018, A&A, 616, A1 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  23. Gardner, J. P., Mather, J. C., Clampin, M., et al. 2006, Space Sci. Rev., 123, 485 [Google Scholar]
  24. Geiger, R. S., Cope, D., Ip, J., et al. 2021, Quant. Sci. Stud., 2, 795 [CrossRef] [Google Scholar]
  25. Geurts, P., Ernst, D., & Wehenkel, L. 2006, Mach. Learn., 63, 3 [Google Scholar]
  26. Glass, I. S. 1999, Handbook of Infrared Astronomy (Cambridge: Cambridge University Press) [Google Scholar]
  27. Guo, X., Liu, C., Qiu, B., et al. 2022, MNRAS, 517, 1837 [NASA ADS] [CrossRef] [Google Scholar]
  28. Harris, C. R., Millman, K. J., van der Walt, S. J., et al. 2020, Nature, 585, 357 [NASA ADS] [CrossRef] [Google Scholar]
  29. Hastie, T., Tibshirani, R., & Friedman, J. 2009, The Elements of Statistical Learning: Data Mining, Inference and Prediction, 2nd edn. (New York: Springer) [Google Scholar]
  30. Hunt, E. L., & Reffert, S. 2023, A&A, 673, A114 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  31. Hunt, E. L., & Reffert, S. 2024, A&A, 686, A42 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  32. Ivezić, Ž., Connolly, A., Vanderplas, J., & Gray, A. 2019, Statistics, Data Mining and Machine Learning in Astronomy, 1st edn. (Princeton: Princeton University Press) [CrossRef] [Google Scholar]
  33. Ke, G., Meng, Q., Finley, T., et al. 2017, in Advances in Neural Information Processing Systems, eds. I. Guyon, U. V. Luxburg, S. Bengio, et al. (Curran Associates, Inc.), 30 [Google Scholar]
  34. Kennedy, G. M., & Wyatt, M. C. 2012, MNRAS, 426, 91 [CrossRef] [Google Scholar]
  35. Kessler, M. F., Steinz, J. A., Anderegg, M. E., et al. 1996, A&A, 315, L27 [NASA ADS] [Google Scholar]
  36. Krakowski, T., Małek, K., Bilicki, M., et al. 2016, A&A, 596, A39 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  37. Kremer, J., Stensbo-Smidt, K., Gieseke, F., Pedersen, K. S., & Igel, C. 2017, IEEE Intelligent Systems, 32, 16 [CrossRef] [Google Scholar]
  38. Kurcz, A., Bilicki, M., Solarz, A., et al. 2016, A&A, 592, A25 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  39. Kursa, M. B., & Rudnicki, W. R. 2010, J. Statist. Softw., 36, 1 [CrossRef] [Google Scholar]
  40. Lindholm, A., Wahlström, N., Lindsten, F., & Schön, T. B. 2022, Machine Learning - A First Course for Engineers and Scientists (Cambridge: Cambridge University Press) [CrossRef] [Google Scholar]
  41. Marton, G., Ábrahám, P., Szegedi-Elek, E., et al. 2019, MNRAS, 487, 2522 [Google Scholar]
  42. Moriwaki, K., Nishimichi, T., & Yoshida, N. 2023, Rep. Progr. Phys., 86, 076901 [CrossRef] [Google Scholar]
  43. Murakami, H., Baba, H., Barthel, P., et al. 2007, PASJ, 59, S369 [CrossRef] [Google Scholar]
  44. Neal, R. M. 2012, Bayesian Learning for Neural Networks (Springer Science& Business Media), 118 [Google Scholar]
  45. Neugebauer, G., Habing, H. J., van Duinen, R., et al. 1984, ApJ, 278, L1 [NASA ADS] [CrossRef] [Google Scholar]
  46. Nguyen, T., Pankratius, V., Eckman, L., & Seager, S. 2018, Astron. Comput., 23, 72 [NASA ADS] [CrossRef] [Google Scholar]
  47. Ochsenbein, F., Bauer, P., & Marcout, J. 2000, A&AS, 143, 23 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  48. Patel, R. I., Metchev, S. A., & Heinze, A. 2014, ApJS, 212, 10 [Google Scholar]
  49. Patel, R. I., Metchev, S. A., Heinze, A., & Trollo, J. 2017, AJ, 153, 54 [NASA ADS] [CrossRef] [Google Scholar]
  50. Pearce, T., Zaki, M., Brintrup, A., & Neely, A. 2018, arXiv e-prints [arXiv:1802.07167] [Google Scholar]
  51. Pedregosa, F., Varoquaux, G., Gramfort, A., et al. 2011, J. Mach. Learn. Res., 12, 2825 [Google Scholar]
  52. Pesenson, M. Z., Pesenson, I. Z., & McCollum, B. 2010, Adv. Astron., 2010, 350891 [Google Scholar]
  53. Rebull, L. M., Stapelfeldt, K. R., Evans, N. J., I, et al. 2007, ApJS, 171, 447 [NASA ADS] [CrossRef] [Google Scholar]
  54. Retana-Montenegro, E., & Röttgering, H. J. A. 2020, A&A, 636, A12 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  55. Sagi, O., & Rokach, L. 2018, WIREs Data Mining and Knowledge Discovery, 8, e1249 [CrossRef] [Google Scholar]
  56. Sedgwick, C., & Serjeant, S. 2022, MNRAS, 515, 4828 [CrossRef] [Google Scholar]
  57. Shu, Y., Koposov, S. E., Evans, N. W., et al. 2019, MNRAS, 489, 4741 [Google Scholar]
  58. Silverberg, S. M., Kuchner, M. J., Wisniewski, J. P., et al. 2018, ApJ, 868, 43 [NASA ADS] [CrossRef] [Google Scholar]
  59. Suazo, M., Zackrisson, E., Wright, J. T., Korn, A. J., & Huston, M. 2022, MNRAS, 512, 2988 [NASA ADS] [CrossRef] [Google Scholar]
  60. The pandas development team 2020, https://doi.org/10.5281/zenodo.13819579 [Google Scholar]
  61. van der Marel, N., Verhaar, B. W., van Terwisga, S., et al. 2016, A&A, 592, A126 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  62. Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020, Nat. Methods, 17, 261 [Google Scholar]
  63. Werner, M. W., Roellig, T. L., Low, F. J., et al. 2004, ApJS, 154, 1 [NASA ADS] [CrossRef] [Google Scholar]
  64. Wes, M. 2010, in Proceedings of the 9th Python in Science Conference, eds. S. van der Walt, & J. Millman, 56 [Google Scholar]
  65. Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., et al. 2010, AJ, 140, 1868 [Google Scholar]
  66. Xu, S., Lai, S., & Dennihy, E. 2020, ApJ, 902, 127 [NASA ADS] [CrossRef] [Google Scholar]
  67. Yeo, I.-K., & Johnson, R. A. 2000, Biometrika, 87, 954 [CrossRef] [Google Scholar]
  68. Zeraatgari, F. Z., Hafezianzadeh, F., Zhang, Y., et al. 2024, MNRAS, 527, 4677 [Google Scholar]
  69. Zhao, G., Qiu, B., Luo, A. L., et al. 2023, Res. Astron. Astrophys., 23, 085010 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.