Open Access
Issue |
A&A
Volume 690, October 2024
|
|
---|---|---|
Article Number | A274 | |
Number of page(s) | 7 | |
Section | Numerical methods and codes | |
DOI | https://doi.org/10.1051/0004-6361/202450995 | |
Published online | 11 October 2024 |
- Aarseth, S. J. 2003, Gravitational N-Body Simulations (Cambridge, UK: Cambridge University Press) [Google Scholar]
- Ballone, A., Mapelli, M., Di Carlo, U. N., et al. 2020, MNRAS, 496, 49 [NASA ADS] [CrossRef] [Google Scholar]
- Ballone, A., Torniamenti, S., Mapelli, M., et al. 2021, MNRAS, 501, 2920 [NASA ADS] [CrossRef] [Google Scholar]
- Chib, S., & Greenberg, E. 1995, Am. Statist., 49, 327 [Google Scholar]
- Chung, C., Pasquato, M., Lee, S.-Y., et al. 2019, ApJ, 883, L31 [NASA ADS] [CrossRef] [Google Scholar]
- Cranmer, K., Brehmer, J., & Louppe, G. 2020, PNAS, 117, 30055 [NASA ADS] [CrossRef] [Google Scholar]
- Dall’Amico, M., Mapelli, M., Di Carlo, U. N., et al. 2021, MNRAS, 508, 3045 [CrossRef] [Google Scholar]
- Eckhardt, R. 1987, Los Alamos Sci., 15, 131 [Google Scholar]
- Evans, Neal, J. I. 1999, ARA&A, 37, 311 [Google Scholar]
- Gardner, J. R., Pleiss, G., Bindel, D., Weinberger, K. Q., & Wilson, A. G. 2018, GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration [Google Scholar]
- Griffiths, R.-R. 2022, Applications of Gaussian Processes at Extreme Length-scales: From Molecules to Black Holes (Apollo – University of Cambridge Repository), https://doi.org/10.17863/CAM.93643 [Google Scholar]
- Hastie, T., Tibshirani, R., & Friedman, J. 2001, The Elements of Statistical Learning, Springer Series in Statistics (New York, NY, USA: Springer New York Inc.) [CrossRef] [Google Scholar]
- Iorio, G., Mapelli, M., Costa, G., et al. 2023, MNRAS, 524, 426 [NASA ADS] [CrossRef] [Google Scholar]
- Jia, W., Sun, M., Lian, J., et al. 2022, Complex Intell. Syst., 8, 2663 [CrossRef] [Google Scholar]
- Krause, M. G. H., Offner, S. S. R., Charbonnel, C., et al. 2020, Space Sci. Rev., 216, 64 [CrossRef] [Google Scholar]
- Krumholz, M. R., McKee, C. F., & Bland-Hawthorn, J. 2019, Annu. Rev. Astron. Astrophys., 57, 227 [CrossRef] [Google Scholar]
- Lada, C. J., & Lada, E. A. 2003, ARA&A, 41, 57 [Google Scholar]
- Lueckmann, J.-M., Boelts, J., Greenberg, D. S., Gonçalves, P. J., & Macke, J. H. 2021, Benchmarking Simulation-Based Inference [Google Scholar]
- Mack, Y. P., & Rosenblatt, M. 1979, J. Multivariate Anal., 9, 1 [CrossRef] [Google Scholar]
- Malmberg, D., Davies, M. B., & Heggie, D. C. 2011, MNRAS, 411, 859 [Google Scholar]
- Pang, X., Yu, Z., Tang, S.-Y., et al. 2021, ApJ, 923, 20 [NASA ADS] [CrossRef] [Google Scholar]
- Pang, X., Tang, S.-Y., Li, Y., et al. 2022, ApJ, 931, 156 [NASA ADS] [CrossRef] [Google Scholar]
- Parker, R. J., & Quanz, S. P. 2012, MNRAS, 419, 2448 [Google Scholar]
- Pfalzner, S., Davies, M. B., Gounelle, M., et al. 2015, Phys. Scr, 90, 068001 [NASA ADS] [CrossRef] [Google Scholar]
- Pichardo, B., Moreno, E., Allen, C., et al. 2012, AJ, 143, 73 [NASA ADS] [CrossRef] [Google Scholar]
- Prechelt, L. 1996, in Neural Networks [Google Scholar]
- Rasmussen, C. E. 2004, Gaussian Processes in Machine Learning, eds. O. Bousquet, U. von Luxburg, & G. Rätsch (Berlin, Heidelberg: Springer), 63 [Google Scholar]
- Rasmussen, C. E., & Williams, C. K. I. 2006, Gaussian Processes for Machine Learning, Adaptive Computation and Machine Learning (MIT Press), I, 1 [Google Scholar]
- Rastello, S., Mapelli, M., Di Carlo, U. N., et al. 2021, MNRAS, 507, 3612 [CrossRef] [Google Scholar]
- Robert, C., & Casella, G. 2011, Statist. Sci., 26 [Google Scholar]
- Roy, V. 2020, Annu. Rev. Statist. Appl., 7, 387 [CrossRef] [Google Scholar]
- Spurzem, R., & Kamlah, A. 2023, Living Rev. Computat. Astrophys., 9, 3 [CrossRef] [Google Scholar]
- Spurzem, R., Giersz, M., Heggie, D. C., & Lin, D. N. C. 2009, ApJ, 697, 458 [Google Scholar]
- Staff at the National Astronomy & Ionosphere Center 1975, Icarus, 26, 462 [CrossRef] [Google Scholar]
- Torniamenti, S., Ballone, A., Mapelli, M., et al. 2021, MNRAS, 507, 2253 [NASA ADS] [CrossRef] [Google Scholar]
- Torniamenti, S., Pasquato, M., Di Cintio, P., et al. 2022, MNRAS, 510, 2097 [Google Scholar]
- Wang, J. 2022, An Intuitive Tutorial to Gaussian Processes Regression [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.