Open Access
Issue |
A&A
Volume 683, March 2024
|
|
---|---|---|
Article Number | A34 | |
Number of page(s) | 14 | |
Section | Catalogs and data | |
DOI | https://doi.org/10.1051/0004-6361/202346625 | |
Published online | 04 March 2024 |
- Allwein, E., Schapire, R., & Singer, Y. 2000, J. Mach. Learn. Res., 1, 113 [Google Scholar]
- Atlee, D. W., & Gould, A. 2007, ApJ, 664, 53 [NASA ADS] [CrossRef] [Google Scholar]
- Bailer-Jones, C. A. L., Fouesneau, M., & Andrae, R. 2019, MNRAS, 490, 5615 [CrossRef] [Google Scholar]
- Baqui, P. O., Marra, V., Casarini, L., et al. 2021, A&A, 645, A87 [EDP Sciences] [Google Scholar]
- Barbisan, E., Huang, J., Dage, K. C., et al. 2022, MNRAS, 514, 943 [NASA ADS] [CrossRef] [Google Scholar]
- Batista, G., Prati, R., & Monard, M.-C. 2004, SIGKDD Explor., 6, 20 [CrossRef] [Google Scholar]
- Boutsia, K., Grazian, A., Calderone, G., et al. 2020, ApJS, 250, 26 [NASA ADS] [CrossRef] [Google Scholar]
- Boutsia, K., Grazian, A., Fontanot, F., et al. 2021, ApJ, 912, 111 [NASA ADS] [CrossRef] [Google Scholar]
- Brescia, M., Cavuoti, S., Razim, O., et al. 2021, Front. Astron. Space Sci., 8 [CrossRef] [Google Scholar]
- Calderone, G., Boutsia, K., Cristiani, S., et al. 2019, ApJ, 887, 268 [NASA ADS] [CrossRef] [Google Scholar]
- Chambers, K. C., Magnier, E. A., Metcalfe, N., et al. 2016, ArXiv e-prints [arXiv:1612.05560] [Google Scholar]
- Chen, T., & Guestrin, C. 2016, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16 (New York, NY, USA: ACM), 785 [Google Scholar]
- Colless, M., Dalton, G., Maddox, S., et al. 2001, MNRAS, 328, 1039 [Google Scholar]
- Cristiani, S., Porru, M., Guarneri, F., et al. 2023, MNRAS, 522, 2019 [NASA ADS] [CrossRef] [Google Scholar]
- Cupani, G., Calderone, G., Selvelli, P., et al. 2022, MNRAS, 510, 2509 [NASA ADS] [CrossRef] [Google Scholar]
- D’Abrusco, R., Massaro, F., Paggi, A., et al. 2014, ApJS, 215, 14 [Google Scholar]
- D’Abrusco, R., Álvarez Crespo, N., Massaro, F., et al. 2019, ApJS, 242, 4 [Google Scholar]
- De Angeli, F., Weiler, M., Montegriffo, P., et al. 2023, A&A, 674, A2 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Esposito, C., Landrum, G. A., Schneider, N., Stiefl, N., & Riniker, S. 2021, J. Chem. Inform. Model., 61, 2623 [CrossRef] [Google Scholar]
- Fernández, A., García, S., Galar, M., et al. 2019, Learning from Imbalanced Data Sets (Cham: Springer) [Google Scholar]
- Friedman, J. H. 2001, Ann. Stat., 29, 1189 [Google Scholar]
- Grazian, A., Giallongo, E., Boutsia, K., et al. 2022, ApJ, 924, 62 [NASA ADS] [CrossRef] [Google Scholar]
- Guarneri, F., Calderone, G., Cristiani, S., et al. 2021, MNRAS, 506, 2471 [NASA ADS] [CrossRef] [Google Scholar]
- Guarneri, F., Calderone, G., Cristiani, S., et al. 2022, MNRAS, 517, 2436 [NASA ADS] [CrossRef] [Google Scholar]
- Hughes, A. C. N., Bailer-Jones, C. A. L., & Jamal, S. 2022, A&A, 668, A99 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Jin, X., Zhang, Y., Zhang, J., et al. 2019, MNRAS, 485, 4539 [NASA ADS] [CrossRef] [Google Scholar]
- Jin, J.-J., Wu, X.-B., Fu, Y., et al. 2023, ApJS, 265, 25 [NASA ADS] [CrossRef] [Google Scholar]
- Johnson, J. M., & Khoshgoftaar, T. M. 2021, in 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA), 1182 [CrossRef] [Google Scholar]
- Jones, D. H., Read, M. A., Saunders, W., et al. 2009, MNRAS, 399, 683 [Google Scholar]
- Khorunzhev, G. A., Burenin, R. A., Meshcheryakov, A. V., & Sazonov, S. Y. 2016, Astron. Lett., 42, 277 [NASA ADS] [CrossRef] [Google Scholar]
- Khramtsov, V., Sergeyev, A., Spiniello, C., et al. 2019, A&A, 632, A56 [EDP Sciences] [Google Scholar]
- Leys, C., Ley, C., Klein, O., Bernard, P., & Licata, L. 2013, J. Exp. Soc. Psychol., 49, 764 [CrossRef] [Google Scholar]
- Liske, J., Grazian, A., Vanzella, E., et al. 2008, MNRAS, 386, 1192 [NASA ADS] [CrossRef] [Google Scholar]
- Lyke, B. W., Higley, A. N., McLane, J. N., et al. 2020, ApJS, 250, 8 [NASA ADS] [CrossRef] [Google Scholar]
- McQuinn, M. 2016, ARA&A, 54, 313 [NASA ADS] [CrossRef] [Google Scholar]
- Meiksin, A. A. 2009, Rev. Mod. Phys., 81, 1405 [Google Scholar]
- Murphy, M. T., Molaro, P., Leite, A. C. O., et al. 2022, A&A, 658, A123 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Nakazono, L., Mendes de Oliveira, C., Hirata, N. S. T., et al. 2021, MNRAS, 507, 5847 [CrossRef] [Google Scholar]
- Nakoneczny, S. J., Bilicki, M., Pollo, A., et al. 2021, A&A, 649, A81 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Niculescu-Mizil, A., & Caruana, R. 2005, in ICML ’05: Proceedings of the 22nd international Conference on Machine Learning, 625 [Google Scholar]
- Onken, C. A., Wolf, C., Bian, F., et al. 2022, MNRAS, 511, 572 [NASA ADS] [CrossRef] [Google Scholar]
- Parmar, A., Katariya, R., & Patel, V. 2019, in International Conference on Intelligent Data Communication Technologies and Internet of Things (ICICI) 2018, eds. J. Hemanth, X. Fernando, P. Lafata, & Z. Baig (Cham: Springer International Publishing), 758 [Google Scholar]
- Péroux, C., & Howk, J. C. 2020, ARA&A, 58, 363 [CrossRef] [Google Scholar]
- Prati, R. C., Batista, G. E. A. P. A., & Monard, M. C. 2004, in MICAI 2004: Advances in Artificial Intelligence, eds. R. Monroy, G. Arroyo-Figueroa, L. E. Sucar, & H. Sossa (Berlin, Heidelberg: Springer Berlin Heidelberg), 312 [Google Scholar]
- Prati, R., Batista, G., & Monard, M.-C. 2009, in Paper presented at the IICAI, 359 [Google Scholar]
- Provost, F. J. 2000, in AAAI Technical Report WS-00-05, Workshop on Imbalanced Data Sets [Google Scholar]
- Provost, F., & Fawcett, T. 1997, in Proceedings of the Third International Conference on Knowledge Discovery and Data Mining, 43 [Google Scholar]
- Reis, I., Baron, D., & Shahaf, S. 2019, AJ, 157, 16 [Google Scholar]
- Richards, G. T., Myers, A. D., Gray, A. G., et al. 2009, ApJS, 180, 67 [Google Scholar]
- Rodrigues, N. V. N., Raul Abramo, L., Queiroz, C., et al. 2023, MNRAS, 520, 3494 [NASA ADS] [CrossRef] [Google Scholar]
- Rousseeuw, P. J., & Croux, C. 1993, J. Am. Stat. Assoc., 88, 1273 [Google Scholar]
- Schindler, J.-T., Fan, X., Huang, Y.-H., et al. 2019a, ApJS, 243, 5 [NASA ADS] [CrossRef] [Google Scholar]
- Schindler, J.-T., Fan, X., McGreer, I. D., et al. 2019b, ApJ, 871, 258 [NASA ADS] [CrossRef] [Google Scholar]
- Smith, M. R., Martinez, T. R., & Giraud-Carrier, C. G. 2013, Mach. Learn., 95, 225 [Google Scholar]
- Trakhtenbrot, B. 2021, in Nuclear Activity in Galaxies Across Cosmic Time, eds. M. Povic, P. Marziani, J. Masegosa, H. Netzer, S. H. Negu, & S. B. Tessema, IAU Symp., 356, 261 [NASA ADS] [Google Scholar]
- Véron-Cetty, M. P., & Véron, P. 2010, A&A, 518, A10 [Google Scholar]
- Wenzl, L., Schindler, J.-T., Fan, X., et al. 2021, AJ, 162, 72 [NASA ADS] [CrossRef] [Google Scholar]
- Wolf, C., Hon, W. J., Bian, F., et al. 2020, MNRAS, 491, 1970 [NASA ADS] [CrossRef] [Google Scholar]
- Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., et al. 2010, AJ, 140, 1868 [Google Scholar]
- Yang, J., Wang, F., Wu, X.-B., et al. 2016, ApJ, 829, 33 [NASA ADS] [CrossRef] [Google Scholar]
- Zou, Q., Xie, S., Lin, Z., Wu, M., & Ju, Y. 2016, Big Data Res., 5, 2 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.