Open Access
Issue |
A&A
Volume 680, December 2023
|
|
---|---|---|
Article Number | A74 | |
Number of page(s) | 12 | |
Section | Astronomical instrumentation | |
DOI | https://doi.org/10.1051/0004-6361/202347182 | |
Published online | 08 December 2023 |
- An, J., & Cho, S. 2015, Variational autoencoder based anomaly detection using reconstruction probability. Special lecture on IE, 2, 1 [Google Scholar]
- Baireddy, S., Desai, S. R., Mathieson, J. L., et al. 2021, in 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (IEEE), 1951 [CrossRef] [Google Scholar]
- Barsdell, B. R., Bailes, M., Barnes, D. G., & Fluke, C. J. 2012, MNRAS, 422, 379 [CrossRef] [Google Scholar]
- Bassa, C. G., Romein, J. W., Veenboer, B., van der Vlugt, S., & Wijnholds, S. J. 2022, A & A, 657, A46 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Bergmann, P., Fauser, M., Sattlegger, D., & Steger, C. 2019a, in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 9584 [Google Scholar]
- Bergmann, P., Löwe, S., Fauser, M., Sattlegger, D., & Steger, C. 2019b, VISI-GRAPP 2019 – Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, 5, 372 [Google Scholar]
- Bergman, L., Cohen, N., & Hoshen, Y. 2020, arXiv e-prints [arXiv:2002.10445] [Google Scholar]
- Bommasani, R., Hudson, D. A., Adeli, E., et al. 2021, arXiv e-prints [arXiv:2108.07258] [Google Scholar]
- Broekema, P. C., Mol, J. J. D., Nijboer, R., et al. 2018, Astron. Comput., 23, 180 [NASA ADS] [CrossRef] [Google Scholar]
- Burlina, P., Joshi, N., & Wang, I. J. 2019, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 11499 [Google Scholar]
- Chandola, V., Banerjee, A., & Kumar, V. 2009, ACM Comput. Surv., 41, 1 [CrossRef] [Google Scholar]
- Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. 2020, arXiv e-prints [arXiv:2002.05709] [Google Scholar]
- Connor, L., & van Leeuwen, J. 2018, AJ, 156, 256 [NASA ADS] [CrossRef] [Google Scholar]
- de Gasperin, F., Dijkema, T. J., Drabent, A., et al. 2019, A & A, 622, A5 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Doersch, C., Gupta, A., & Efros, A. A. 2015, in IEEE International Conference on Computer Vision (ICCV), 1422 [CrossRef] [Google Scholar]
- Dosovitskiy, A., Beyer, L., Kolesnikov, A., et al. 2021, in International Conference on Learning Representations [Google Scholar]
- Fei-Fei, L., Deng, J., & Li, K. 2010, J. Vision, 9, 1037 [CrossRef] [Google Scholar]
- Foley, A. R., Alberts, T., Armstrong, R. P., et al. 2016, MNRAS, 460, 1664 [NASA ADS] [CrossRef] [Google Scholar]
- George, D., & Huerta, E. 2018, Phys. Rev. D, 97, 044039 [NASA ADS] [CrossRef] [Google Scholar]
- Grill, J.-B., Strub, F., Altché, F., et al. 2020, in Advances in Neural Information Processing Systems [Google Scholar]
- Gunn, J. E., Carr, M., Rockosi, C., et al. 1998, AJ, 116, 3040 [NASA ADS] [CrossRef] [Google Scholar]
- Hayat, M. A., Stein, G., Harrington, P., Lukić, Z., & Mustafa, M. 2021, ApJ, 911, L33 [NASA ADS] [CrossRef] [Google Scholar]
- He, K., Zhang, X., Ren, S., & Sun, J. 2016, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 770 [Google Scholar]
- He, K., Chen, X., Xie, S., et al. 2022, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition [Google Scholar]
- Kerrigan, J., Plante, P. L., Kohn, S., et al. 2019, MNRAS, 11, 1 [Google Scholar]
- La Plante, P., Williams, P., Kolopanis, M., et al. 2021, Astron. Comput., 36, 100489 [NASA ADS] [CrossRef] [Google Scholar]
- Li, C.-L., Sohn, K., Yoon, J., & Pfister, T. 2021, arXiv e-prints [arXiv: 2104.04015] [Google Scholar]
- Liu, F. T., Ting, K. M., & Zhou, Z.-H. 2008, Eighth IEEE International Conference on Data Mining (Pisa, Italy), 413 [Google Scholar]
- Liu, Z., Mao, H., Wu, C.-Y., et al. 2022, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) [Google Scholar]
- Lochner, M., & Bassett, B. 2021, Astron. Comput., 36, 100481 [NASA ADS] [CrossRef] [Google Scholar]
- Ma, P. X., Ng, C., Rizk, L., et al. 2023, Nat. Astron., 7, 492 [NASA ADS] [Google Scholar]
- Margalef-Bentabol, B., Huertas-Company, M., Charnock, T., et al. 2020, MNRAS, 496, 2346 [Google Scholar]
- Malanchev, K. L., Pruzhinskaya, M. V., Korolev, V. S., et al. 2021, MNRAS, 502, 5147 [Google Scholar]
- Melchior, P., Liang, Y., Hahn, C., & Goulding, A. 2023, AJ, 166, 74 [NASA ADS] [CrossRef] [Google Scholar]
- Mesarcik, M., Boonstra, A.-J., Meijer, C., et al. 2020, MNRAS, 496, 1517 [CrossRef] [Google Scholar]
- Mesarcik, M., Boonstra, A.-J., Ranguelova, E., & van Nieuwpoort, R. V. 2022a, MNRAS, 516, 5367 [NASA ADS] [CrossRef] [Google Scholar]
- Mesarcik, M., Ranguelova, E., Boonstra, A.-J., & van Nieuwpoort, R. V. 2022b, Array, 14, 100182 [CrossRef] [Google Scholar]
- Morello, V., Rajwade, K. M., & Stappers, B. W. 2021, MNRAS, 510, 1393 [NASA ADS] [CrossRef] [Google Scholar]
- Muthukrishna, D., Mandel, K. S., Lochner, M., Webb, S., & Narayan, G. 2022, MNRAS, 517, 393 [NASA ADS] [CrossRef] [Google Scholar]
- Nan, R., Li, D., Jin, C., et al. 2011, Int. J. Mod. Phys. D, 20, 989 [Google Scholar]
- Norris, R. P. 2010, Proceedings – 6th IEEE International Conference on e-Science Workshops, e-ScienceW 2010, 21 [Google Scholar]
- Offringa, A. R., de Bruyn, A. G., Biehl, M., et al. 2010, MNRAS, 405, 155 [NASA ADS] [Google Scholar]
- Pidhorskyi, S., Almohsen, R., Adjeroh, D. A., & Doretto, G. 2018, Adv. Neural Inform. Process. Syst., 6822 [Google Scholar]
- Prasad, P., Wijnholds, S. J., Huizinga, F., & Wijers, R. A. M. J. 2014, A & A, 568, A48 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Reiss, T., & Hoshen, Y. 2021, arXiv e-prints [arXiv:2106.03844] [Google Scholar]
- Romein, J. W., Broekema, P. C., Mol, J. D., & van Nieuwpoort, R. V. 2010, ACM SIGPLAN Notices, 45, 169 [CrossRef] [Google Scholar]
- Roth, K., Pemula, L., Zepeda, J., et al. 2021, CVPR, accepted [arXiv:2106.08265] [Google Scholar]
- Schölkopf, B., Williamson, R., Smola, A., Shawe-Taylor, J., & Platt, J. 1999, in Proceedings of the 12th International Conference on Neural Information Processing Systems, Denver, CO, 582 [Google Scholar]
- Sclocco, A., van Leeuwen, J., Bal, H., & van Nieuwpoort, R. 2016, Astron. Comput., 14, 1 [NASA ADS] [CrossRef] [Google Scholar]
- Sclocco, A., Vohl, D., & Van Nieuwpoort, R. V. 2019, RFI 2019 – Proceedings of 2019 Radio Frequency Interference: Coexisting with Radio Frequency Interference [Google Scholar]
- Spirkovska, L., Iverson, D., Hall, D., et al. 2010, in Space Ops 2010 Conference (Reston, Virginia: American Institute of Aeronautics and Astronautics) [Google Scholar]
- Storey-Fisher, K., Huertas-Company, M., Ramachandra, N., et al. 2021, MNRAS, 508, 2946 [NASA ADS] [CrossRef] [Google Scholar]
- Tack, J., Mo, S., Jeong, J., & Shin, J. 2020, arXiv e-prints [arXiv:2007.08176] [Google Scholar]
- Tasse, C., Hugo, B., Mirmont, M., et al. 2018, A & A, 611, A87 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- van Haarlem, M. P., Wise, M. W., Gunst, A. W., et al. 2013, A & A, 556, A2 [CrossRef] [EDP Sciences] [Google Scholar]
- van Nieuwpoort, R. V., & Romein, J. W. 2011, Int. J. Parallel Programm., 39, 88 [CrossRef] [Google Scholar]
- Villar, V. A., Cranmer, M., Berger, E., et al. 2021, ApJS, 255, 24 [NASA ADS] [CrossRef] [Google Scholar]
- Vocks, C., Mann, G., Breitling, F., et al. 2018, A & A, 614, A54 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Walmsley, M., Lintott, C., Géron, T., et al. 2021, MNRAS, 509, 3966 [NASA ADS] [CrossRef] [Google Scholar]
- Walmsley, M., Scaife, A. M. M., Lintott, C., et al. 2022, MNRAS, 513, 1581 [NASA ADS] [CrossRef] [Google Scholar]
- Wattenberg, M., Viégas, F., & Johnson, I. 2016, Distill, 1, e2 [CrossRef] [Google Scholar]
- Weeren, R. J. V., Williams, W. L., Hardcastle, M. J., et al. 2016, ApJS, 223, 2 [CrossRef] [Google Scholar]
- Wijnholds, S. J., Van Der Tol, S., Nijboer, R., & Van Der Veen, A. J. 2010, IEEE Signal Process. Mag., 27, 30 [CrossRef] [Google Scholar]
- Yatawatta, S., de Bruyn, A. G., Brentjens, M. A., et al. 2013, A & A, 550, A136 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Yi, J., & Yoon, S. 2021, in Lecture Notes in Computer Science, 375 [CrossRef] [Google Scholar]
- Zhang, Y. G., Hyun Won, K., Son, S. W., Siemion, A., & Croft, S. 2018 IEEE Global Conference on Signal and Information Processing, GlobalSIP 2018 – Proceedings, 1114 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.