Open Access
Issue
A&A
Volume 677, September 2023
Article Number A167
Number of page(s) 19
Section Astronomical instrumentation
DOI https://doi.org/10.1051/0004-6361/202347073
Published online 22 September 2023
  1. Amari, S.-I. 1993, Neurocomputing, 5, 185 [CrossRef] [Google Scholar]
  2. Arjovsky, M., Chintala, S., & Bottou, L. 2017, ArXiv e-prints [arXiv:1701.07875] [Google Scholar]
  3. Astropy Collaboration (Robitaille, T.P., et al.) 2013, A&A, 558, A33 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  4. Astropy Collaboration (Price-Whelan, A.M., et al.) 2018, AJ, 156, 123 [NASA ADS] [CrossRef] [Google Scholar]
  5. Becker, R.H., White, R.L., & Helfand, D.J. 1995, ApJ, 450, 559 [NASA ADS] [CrossRef] [Google Scholar]
  6. Clark, B.G. 1980, A&A, 89, 377 [NASA ADS] [Google Scholar]
  7. Delli Veneri, M., Tychoniec, L., Guglielmetti, F., Longo, G., & Villard, E. 2022, MNRAS, 518, 3407 [CrossRef] [Google Scholar]
  8. Fanaroff, B.L., & Riley, J.M. 1974, MNRAS, 167, 31 [Google Scholar]
  9. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., et al. 2014, ArXiv e-prints [arXiv:1406.2661] [Google Scholar]
  10. Goodfellow, I., Bengio, Y., & Courville, A. 2016, Deep Learning – Chapter 9: Convolutional Networks (MIT Press) [Google Scholar]
  11. Grainge, K., Alachkar, B., Amy, S., et al. 2017, Astron. Rep., 61, 288 [NASA ADS] [CrossRef] [Google Scholar]
  12. Griese, F., Kummer, J., & Rustige, L. 2022, https://doi.org/10.5281/zenodo.7120632 [Google Scholar]
  13. Griese, F., Kummer, J., Connor, P.L.S., Bruggen, M., & Rustige, L. 2023, Data in Brief, 47, 108974 [NASA ADS] [CrossRef] [Google Scholar]
  14. Gross, S., & Wilber, M. 2016, Training and investigating Residual Nets [Google Scholar]
  15. Hamaker, J.P., Bregman, J.D., & Sault, R.J. 1996, A&AS, 117, 137 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  16. He, K., Zhang, X., Ren, S., & Sun, J. 2015, ArXiv e-prints [arXiv:1512.03385] [Google Scholar]
  17. Howard, J., et al. 2018, https://github.com/fastai/fastai [Google Scholar]
  18. Hunter, J.D. 2007, Comput. Sci. Eng., 9, 90 [Google Scholar]
  19. Kingma, D.P., & Ba, J. 2014, ArXiv e-prints [arXiv:1412.6980] [Google Scholar]
  20. Kummer, J., Rustige, L., Griese, F., et al. 2022, in INFORMATIK 2022, Lecture Notes in Informatics (LNI) — Proceedings, P-326 (Bonn: Gesellschaft fur Informatik), 469 [Google Scholar]
  21. Ledig, C., Theis, L., Huszar, F., et al. 2016, ArXiv e-prints [arXiv:1609.04802] [Google Scholar]
  22. McKinney, W. et al. 2010, in Proceedings of the 9th Python in Science Conference, 445, 51 [Google Scholar]
  23. Medeiros, L., Psaltis, D., Lauer, T.R., & Ozel, F. 2023, ApJ, 947, L7 [NASA ADS] [CrossRef] [Google Scholar]
  24. NRAO 2023, Sensitivity, https://science.nrao.edu/facilities/vla/docs/manuals/oss/performance/sensitivity [Google Scholar]
  25. Offringa, A.R., McKinley, B., Hurley-Walker, N., et al. 2014, MNRAS, 444, 606 [NASA ADS] [CrossRef] [Google Scholar]
  26. Oliphant, T.E. 2006, A Guide to NumPy, 1 (USA: Trelgol Publishing) [Google Scholar]
  27. Paszke, A., Gross, S., Massa, F., et al. 2019, in Advances in Neural Information Processing Systems, 32, eds. H. Wallach, H. Larochelle, A. Beygelzimer, F. Alche-Buc, E. Fox, & R. Garnett (Curran Associates, Inc.), 8026 [Google Scholar]
  28. Rustige, L., Kummer, J., Griese, F., et al. 2023, RAS Techniques and Instruments, 2, 264 [NASA ADS] [CrossRef] [Google Scholar]
  29. Salimans, T., Goodfellow, I., Zaremba, W., et al. 2016, ArXiv e-prints [arXiv:1606.03498] [Google Scholar]
  30. Schmidt, K., Geyer, F., et al. 2020, https://github.com/radionets-project/pyvisgen [Google Scholar]
  31. Schmidt, K., Geyer, F., Frose, S., et al. 2022, A&A, 664, A134 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  32. Schmidt, K., Geyer, F., Poggenpohl, A., & Elsasser, D. 2023, https://github.com/radionets-project/radionets [Google Scholar]
  33. Schwab, F.R. 1984, AJ, 89, 1076 [NASA ADS] [CrossRef] [Google Scholar]
  34. Smirnov, O.M. 2011, A&A, 527, A106 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  35. Taylor, G.B., Carilli, C.L., & Perley, R.A. 1999, ASP Conf. Ser., 180 [Google Scholar]
  36. The CASA Team, Bean, B., Bhatnagar, S., et al. 2022, PASP, 134, 114501 [NASA ADS] [CrossRef] [Google Scholar]
  37. The IceCube Collaboration 2021, J. Instrum., 16, P07041 [CrossRef] [Google Scholar]
  38. Valdenegro-Toro, M., & Saromo-Mori, D. 2022, in 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 1508 [CrossRef] [Google Scholar]
  39. Van derWalt, S., Schonberger, J.L., Nunez-Iglesias, J., et al. 2014, PeerJ, 2, e453 [CrossRef] [PubMed] [Google Scholar]
  40. van Haarlem, M.P., Wise, M.W., Gunst, A.W., et al. 2013, A&A, 556, A2 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  41. Wang, Z., Simoncelli, E., & Bovik, A. 2003, in The Thirty-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, 2, 1398 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.