Open Access
Issue |
A&A
Volume 669, January 2023
|
|
---|---|---|
Article Number | A42 | |
Number of page(s) | 9 | |
Section | Numerical methods and codes | |
DOI | https://doi.org/10.1051/0004-6361/202142525 | |
Published online | 04 January 2023 |
- Aasi, J., Abbott, B. P., Abbott, R., et al. 2015, Class. Quant. Grav., 32, 074001 [Google Scholar]
- Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016a, Class. Quant. Grav., 33, 134001 [NASA ADS] [CrossRef] [Google Scholar]
- Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016b, Phys. Rev. Lett., 116, 061102 [Google Scholar]
- Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017, Phys. Rev. Lett., 119, 161101 [Google Scholar]
- Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2019, Phys. Rev. X, 9, 031040 [Google Scholar]
- Abbott, R., Abbott, T. D., Abraham, S., et al. 2021a, Phys. Rev. X 11, 021053 [Google Scholar]
- Abbott, R., Abbott, T. D., Abraham, S., et al. 2021b, SoftwareX, 13, 100658 [NASA ADS] [CrossRef] [Google Scholar]
- Acernese, F., Agathos, M., Agatsuma, K., et al. 2015, Class. Quant. Grav., 32, 024001 [Google Scholar]
- Akutsu, T., Ando, M., Arai, K., et al. 2020, Progr. Theor. Exp. Phys., 2021 [Google Scholar]
- Allen, B., Anderson, W. G., Brady, P. R., Brown, D. A., & Creighton, J. D. E. 2012, Phys. Rev. D, 85, 122006 [NASA ADS] [CrossRef] [Google Scholar]
- Andresen, H., Müller, B., Müller, E., & Janka, H. T. 2017, MNRAS, 468, 2032 [NASA ADS] [CrossRef] [Google Scholar]
- Astone, P., Cerdá-Durán, P., Di Palma, I., et al. 2018, Phys. Rev. D., 98, 122002 [NASA ADS] [CrossRef] [Google Scholar]
- Baker, P. T., Caudill, S., Hodge, K. A., et al. 2015, Phys. Rev. D, 91, 062004 [NASA ADS] [CrossRef] [Google Scholar]
- Cappellaro, E., Turatto, M., Benetti, S., et al. 1993, A&A, 273, 383 [NASA ADS] [Google Scholar]
- Cavaglià, M., Gaudio, S., Hansen, T., et al. 2020, Mach. Learn.: Sci. Technol., 1, 015005 [CrossRef] [Google Scholar]
- Chan, M. L., Heng, I. S., & Messenger, C. 2020, Phys. Rev. D, 102, 043022 [NASA ADS] [CrossRef] [Google Scholar]
- Chua, A. J., & Vallisneri, M. 2020, Phys. Rev. Lett., 124, 041102 [NASA ADS] [CrossRef] [Google Scholar]
- Cuoco, E., Calamai, G., Fabbroni, L., et al. 2001, Class. Quant. Grav., 18, 1727 [NASA ADS] [CrossRef] [Google Scholar]
- Cuoco, E., Razzano, M., & Utina, A. 2018, in 26th European Signal Processing Conference (EUSIPCO), 2648 [CrossRef] [Google Scholar]
- Cuoco, E., Powell, J., Cavaglià, M., et al. 2020, Mach. Learn. Sci. Technol. [Google Scholar]
- Gabbard, H., Williams, M., Hayes, F., & Messenger, C. 2018, Phys. Rev. Lett., 120, 141103 [NASA ADS] [CrossRef] [Google Scholar]
- Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., et al. 2014, Gener. Adversarial Netw. [Google Scholar]
- Green, S. R., Simpson, C., & Gair, J. 2020, Phys. Rev. D, 102, 104057 [NASA ADS] [CrossRef] [Google Scholar]
- Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., & Courville, A. 2017, Improved Training of Wasserstein GANs [Google Scholar]
- Haegel, L., & Husa, S. 2020, Class. Quant. Grav., 37, 135005 [NASA ADS] [CrossRef] [Google Scholar]
- Harry, G. M. 2010, Class. Quant. Grav., 27, 084006 [NASA ADS] [CrossRef] [Google Scholar]
- Hild, S., Abernathy, M., Acernese, F., et al. 2011, Class. Quant. Grav., 28, 094013 [Google Scholar]
- Hochreiter, S., & Schmidhuber, J. 1997, Neural Comput., 9, 1735 [CrossRef] [Google Scholar]
- Hüsken, M., & Stagge, P. 2003, Neurocomputing, 50, 223 [CrossRef] [Google Scholar]
- Iess, A., Cuoco, E., Morawski, F., & Powell, J. 2020, Mach. Learn. Sci. Technol., 1, 025014 [CrossRef] [Google Scholar]
- Kim, K., Li, T. G. F., Lo, R. K. L., Sachdev, S., & Yuen, R. S. H. 2020, Phys. Rev. D, 101, 083006 [NASA ADS] [CrossRef] [Google Scholar]
- Klimenko, S., & Mitselmakher, G. 2004, Class. Quant. Grav., 21, S1819 [NASA ADS] [CrossRef] [Google Scholar]
- Klimenko, S., Vedovato, G., Drago, M., et al. 2016, Phys. Rev. D, 93, 042004 [NASA ADS] [CrossRef] [Google Scholar]
- López, M., Di Palma, I., Drago, M., Cerdá-Durán, P., & Ricci, F. 2021, Phys. Rev. D, 103, 063011 [CrossRef] [Google Scholar]
- Morawski, F., Bejger, M., & Ciecielag, P. 2020, Mach. Learn. Sci. Technol., 1, 025016 [CrossRef] [Google Scholar]
- Mukund, N., Abraham, S., Kandhasamy, S., Mitra, S., & Philip, N. S. 2017, Phys. Rev. D, 95, 104059 [NASA ADS] [CrossRef] [Google Scholar]
- Müller, B., Janka, H.-T., & Dimmelmeier, H. 2010, ApJS, 189, 104 [CrossRef] [Google Scholar]
- Nicolaou, C., Vaidya, A., Dzogang, F., Wardrope, D., & Konstantinidis, N. 2019, in 2019 Sixth International Conference on Social Networks Analysis, Management and Security (SNAMS), 351 [CrossRef] [Google Scholar]
- Powell, J., & Müller, B. 2019, MNRAS, 487, 1178 [NASA ADS] [CrossRef] [Google Scholar]
- Powell, J., & Müller, B. 2020, MNRAS, 494, 4665 [NASA ADS] [CrossRef] [Google Scholar]
- Punturo, M., Abernathy, M., Acernese, F., et al. 2010, Class. Quant. Grav., 27, 194002 [Google Scholar]
- Radice, D., Morozova, V., Burrows, A., Vartanyan, D., & Nagakura, H. 2019, ApJ, 876, L9 [NASA ADS] [CrossRef] [Google Scholar]
- Rampp, M., & Janka, H. T. 2002, A&A, 396, 361 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Razzano, M., & Cuoco, E. 2018, Class. Quant. Grav., 35, 095016 [NASA ADS] [CrossRef] [Google Scholar]
- Rozwadowska, K., Vissani, F., & Cappellaro, E. 2021, New Astron., 83, 101498 [NASA ADS] [CrossRef] [Google Scholar]
- Schutz, B. F. 2011, Class. Quant. Grav., 28, 125023 [Google Scholar]
- Skinner, M. A., Dolence, J. C., Burrows, A., Radice, D., & Vartanyan, D. 2019, ApJS, 241, 7 [NASA ADS] [CrossRef] [Google Scholar]
- Somiya, K. 2012, Class. Quant. Grav., 29, 124007 [NASA ADS] [CrossRef] [Google Scholar]
- Tauris, T. M., Langer, N., & Podsiadlowski, P. 2015, MNRAS, 451, 2123 [NASA ADS] [CrossRef] [Google Scholar]
- Torres-Forné, A., Cuoco, E., Font, J. A., & Marquina, A. 2020, Phys. Rev. D, 102, 023011 [CrossRef] [Google Scholar]
- van den Bergh, S., & Tammann, G. A. 1991, ARA&A, 29, 363 [NASA ADS] [CrossRef] [Google Scholar]
- Varma, V., Gerosa, D., Stein, L. C., Hébert, F., & Zhang, H. 2019, Phys. Rev. Lett., 122, 011101 [NASA ADS] [CrossRef] [Google Scholar]
- Wei, W., & Huerta, E. 2020, Phys. Lett. B, 800, 135081 [NASA ADS] [CrossRef] [Google Scholar]
- Williams, M. J., Veitch, J., & Messenger, C. 2021, Phys. Rev. D, 103, 103006 [NASA ADS] [CrossRef] [Google Scholar]
- Yu, N., Davis, L., & Fritz, M. 2019, Attributing Fake Images to GANs: Learning and Analyzing GAN Fingerprints [Google Scholar]
- Zevin, M., Coughlin, S., Bahaadini, S., et al. 2017, Class. Quant. Grav., 34, 064003 [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.