Press Release
Open Access
Issue
A&A
Volume 665, September 2022
Article Number A149
Number of page(s) 53
Section Astronomical instrumentation
DOI https://doi.org/10.1051/0004-6361/202142493
Published online 23 September 2022
  1. AAO. 2013, Observer, 123 [Google Scholar]
  2. Abahamid, A., Vernin, J., Benkhaldoun, Z., et al. 2004, A & A, 422, 1123 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  3. Allen, M. R., & Ingram, W. J. 2002, Nature, 419, 228 [NASA ADS] [CrossRef] [Google Scholar]
  4. Baker, A. J., Schiemann, R., Hodges, K. I., et al. 2019, J. Climate, 32, 7763 [CrossRef] [Google Scholar]
  5. Baldwin, M. P., Gray, L. J., Dunkerton, T. J., et al. 2001, Rev. Geophys., 39, 179 [CrossRef] [Google Scholar]
  6. Bauer, P., Stevens, B., & Hazeleger, W. 2021, Nature Clim. Change, 11, 80 [NASA ADS] [CrossRef] [Google Scholar]
  7. Bell, B., Hersbach, H., Berrisford, P., et al. 2020, ERA5 hourly data on pressure levels from 1950 to 1978 (preliminary version) [Google Scholar]
  8. Bessell, M. S., Bessell, S.M. 2005, ARA & A, 43, 293 [NASA ADS] [CrossRef] [Google Scholar]
  9. Betancourt, M. 2017, ArXiv [arXiv:1701.02434] [Google Scholar]
  10. Bischoff-Gauß, I., Kalthoff, N., & Fiebig-Wittmaack, M. 2006, Theor. Appl. Climatol., 85, 227 [CrossRef] [Google Scholar]
  11. Bony, S., Stevens, B., Frierson, D. M., et al. 2015, Nat. Geosci., 8, 261 [NASA ADS] [CrossRef] [Google Scholar]
  12. Bradley, E., Roberts, L., Jr., Bradford, L., et al. 2006, PASP, 118, 172 [NASA ADS] [CrossRef] [Google Scholar]
  13. Brookfield, R., Anderson, A., Cotton, D. V., & Ramage, C. 2020, Operations Report – AAT (Semester 19B), Report for User Committee, Tech. rep., Australian National University [Google Scholar]
  14. Buck, A. L. 1981, J. Appl. Meteorol., 20, 1527 [CrossRef] [Google Scholar]
  15. Burtscher, L., Dalgleish, H., Barret, D., et al. 2021, Nat. Astron., 5, 857 [NASA ADS] [CrossRef] [Google Scholar]
  16. Byrne, M. P., & O’Gorman, P. A. 2018, Proc. Natl. Acad. Sci. U.S.A., 115, 4863 [NASA ADS] [CrossRef] [Google Scholar]
  17. Cantalloube, F., Milli, J., Böhm, C., et al. 2020, Nat. Astron., 4, 826 [NASA ADS] [CrossRef] [Google Scholar]
  18. Cao, G., Giambelluca, T.W., Stevens, D. E., & Schroeder, T. A. 2007, J. Climate, 20, 1145 [CrossRef] [Google Scholar]
  19. Castro-Almazán, J. A., Muñoz-Tuñón, C., García-Lorenzo, B., et al. 2016, in Proc. SPIE, 9910, 99100P [Google Scholar]
  20. Catala, L., Crawford, S. M., Buckley, D. A. H., et al. 2013, MNRAS, 436, 590 [CrossRef] [Google Scholar]
  21. Cavazzani, S., Ortolani, S., & Zitelli, V. 2012, MNRAS, 419, 3081 [NASA ADS] [CrossRef] [Google Scholar]
  22. Chapman, I. M., Naylor, D. A., & Phillips, R. R. 2004, MNRAS, 354, 621 [CrossRef] [Google Scholar]
  23. Collins, M., Knutti, R., Arblaster, J., et al. 2013, Long-term Climate Change: Projections, Commitments and Irreversibility, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Tech. rep, ed. T. F. Stocker (Cambridge University Press) [Google Scholar]
  24. Copernicus Climate Change Service (C3S). 2020, ERA5 hourly data on pressure levels from 1979 to present (Copernicus Climate Change Service Climate Data Store (CDS)) [Google Scholar]
  25. Cruz-Gonzales, I., Avila, R., Tapia, M., et al. 2004, in Proc. SPIE, 5382 [Google Scholar]
  26. Da Silva, S. C., Businger, S., & Schroeder, T. 2012, High altitude climate of the island of Hawaï (University of Hawaii) [Google Scholar]
  27. Davies, R., & Kasper, M. 2012, ARA & A, 50, 305 [NASA ADS] [CrossRef] [Google Scholar]
  28. Dempsey, J. T., Friberg, P., Jenness, T., et al. 2013, MNRAS, 430, 2534 [Google Scholar]
  29. EC-Earth Consortium. 2018, EC-Earth-Consortium EC-Earth3P-HR model output prepared for CMIP6 HighResMIP [Google Scholar]
  30. ESO. 2011, The E-ELT Construction Proposal, Tech. rep., European Southern Observatory, Garching bei München [Google Scholar]
  31. ESO. 2015, La Silla—ESO ’ s First Observatory, Tech. rep., European Southern Observatory [Google Scholar]
  32. European Centre for Medium-Range Weather Forecasts. 2014, ERA-20C Project (ECMWF Atmospheric Reanalysis of the 20th Century) [Google Scholar]
  33. Eyring, V., Bony, S., Meehl, G. A., et al. 2016, Geoscientific Model Dev., 9, 1937 [NASA ADS] [CrossRef] [Google Scholar]
  34. Falvey, M., & Rojo, P. M. 2016, Theor. Appl. Climatol. J., 125, 841 [NASA ADS] [CrossRef] [Google Scholar]
  35. Fried, D. L. 1966, J. Opt. Soc. Am., 56, 1372 [NASA ADS] [CrossRef] [Google Scholar]
  36. Gelman, A., & Rubin, D. B. 1992, Stat. Sci., 7, 457 [Google Scholar]
  37. Giambelluca, T. W., & Schroeder, M. A. 1986, Rainfall Atlas of Hawaii, Tech. rep., Department of Land and Natural Resources Hawaii [Google Scholar]
  38. Giambelluca, T.W., Diaz, H. F., & Luke, M. S. 2008, Geophys. Res. Lett., 35, 12 [Google Scholar]
  39. Giorgi, F. 2019, J. Geophys. Res.: Atmos., 124, 5696 [NASA ADS] [CrossRef] [Google Scholar]
  40. Giorgi, F., Jones, C., & Asrar, G. 2009, World Meteorol. Organ. Bull., 58, 175 [Google Scholar]
  41. Gladstone, J. H., & Dale, T. P. 1863, Philos. Trans. Roy. Soc. Lond., 153, 317 [NASA ADS] [CrossRef] [Google Scholar]
  42. Gleckler, P. J., Taylor, K. E., & Doutriaux, C. 2008, J. Geophys. Res. Atmos., 113, D6 [CrossRef] [Google Scholar]
  43. Graham, E., Sarazin, M. S., Beniston, M., et al. 2004, in Ground-based Telescopes, Proc. SPIE, 5489 [Google Scholar]
  44. Graham, E., Sarazin, M., Kurlandczyk, H., Neun, M., & Matzler, C. 2008, Proc. SPIE, Ground-based and Airborne Telescopes II, 7012, 70121Y [NASA ADS] [CrossRef] [Google Scholar]
  45. Grenon, M. 1990, ESO Messenger, 61, 11 [NASA ADS] [Google Scholar]
  46. Haarsma, R. J., Hazeleger, W., Severijns, C., et al. 2013, Geophys. Res. Lett., 40, 1783 [CrossRef] [Google Scholar]
  47. Haarsma, R. J., Roberts, M. J., Vidale, P. L., et al. 2016, Geosci. Model Dev., 9, 4185 [NASA ADS] [CrossRef] [Google Scholar]
  48. Harris, C. R., Millman, K. J., van der Walt, S. J., et al. 2020, Nature, 585, 357 [NASA ADS] [CrossRef] [Google Scholar]
  49. Haustein, K., Allen, M. R., Forster, P. M., et al. 2017, Sci. Rep., 7, 1 [CrossRef] [Google Scholar]
  50. He, J., & Soden, B. J. 2016, J. Climate, 29, 4317 [NASA ADS] [CrossRef] [Google Scholar]
  51. Held, I. M., & Soden, B. J. 2006, J. Climate, 19, 5686 [NASA ADS] [CrossRef] [Google Scholar]
  52. Hellemeier, J. A., Yang, R., Sarazin, M., & Hickson, P. 2019, MNRAS, 482, 4941 [NASA ADS] [CrossRef] [Google Scholar]
  53. Hersbach, H., Bell, B., Berrisford, P., et al. 2018a, ERA5 hourly data on pressure levels from 1979 to present [Google Scholar]
  54. Hersbach, H., Bell, B., Berrisford, P., et al. 2018b, ERA5 hourly data on single levels from 1979 to present [Google Scholar]
  55. Hersbach, H., Bell, B., Berrisford, P., et al. 2020, Q. J. Roy. Meteorol. Soc., 146, 1 [Google Scholar]
  56. Hoyer, S., & Hamman, J. J. 2017, J. Open Res. Softw., 5, 10 [CrossRef] [Google Scholar]
  57. Hunter, J. D. 2007, Comput. Sci. Eng., 9, 90 [NASA ADS] [CrossRef] [Google Scholar]
  58. IPCC. 2013, Summary for Policymakers, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Tech. rep., eds. T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, & S. K. Allen (Cambridge University Press) [Google Scholar]
  59. IPCC. 2021, Climate Change 2021: The Physical Science Basis. Contribution of Working Group 1 to Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Tech. rep. (Cambridge University Press) [Google Scholar]
  60. Kagawa-Viviani, A. K., & Giambelluca, T. W. 2020, J. Geophys. Res.: Atmos., 125, e2019JD031571 [NASA ADS] [CrossRef] [Google Scholar]
  61. Kalinnikov, V. V., & Khutorova, O. G. 2017, Ann. Geophys., 35, 453 [NASA ADS] [CrossRef] [Google Scholar]
  62. Kållberg, P. W., Simmons, A., Uppala, S., & Fuentes, M. 2004, The ERA-40 archive [revised October 2007], Tech. rep., ECMWF, Shinfield Park, Reading [Google Scholar]
  63. Kalnay, E., Kanamitsu, M., Kistler, R., et al. 1996, Bull. Am. Meteorol. Soc., 77, 437 [CrossRef] [Google Scholar]
  64. Kennedy, J., Titchner, H., Rayner, N., & Roberts, M. 2017, Earth System Grid Federation, https://doi.org/10.22033/ESGF/input4MIPs.1221 [Google Scholar]
  65. Kerber, F., Rose, T., Chacón, A., et al. 2012, SPIE, 8446, 84463N [NASA ADS] [Google Scholar]
  66. Kerber, F., Querel, R. R., & Hanuschik, R. 2014, Observatory Operations: Strategies, Processes, and Systems V, 9149, 229 [Google Scholar]
  67. Kidger, M. R., Rodríguez-Espinosa, J. M., Del Rosario, J. C., & Trancho, G. 1998, New Astron. Rev., 42, 537 [CrossRef] [Google Scholar]
  68. Knutti, R., Abramowitz, G., Collins, M., et al. 2010, Good Practice Guidance Paper on Assessing and Combining Multi Model Climate Projections, Meeting Report of the Intergovernmental Panel on Climate Change Expert Meeting on Assessing and Combining Multi Model Climate Projections, Tech. rep., IPCCWorking Group I Technical Support, eds. T. F. Stocker, & D. Qin (Bern, Switzerland: University of Bern) [Google Scholar]
  69. Kornilov, V., Tokovinin, A. A., Vozyakova, O., et al. 2003, MASS: a monitor of the vertical turbulence distribution, Proc. SPIE, 4839 [Google Scholar]
  70. Kriegler, E., Bauer, N., Popp, A., et al. 2017, Global Environ. Change, 42, 297 [CrossRef] [Google Scholar]
  71. López, J. A., Gutiérrez, L., & Pedro Mártir, S. 2003, Rev. Mex. Astron. Astrofís., 19, 3 [Google Scholar]
  72. Lyman, R., Cherubini, T., & Businger, S. 2020, MNRAS, 496, 4734 [NASA ADS] [CrossRef] [Google Scholar]
  73. Mahrt, L., Thomas, C., Richardson, S., et al. 2013, Boundary-Layer Meteorol., 147, 179 [NASA ADS] [CrossRef] [Google Scholar]
  74. Masciadri, E., Vernin, J., & Bougeault, P. 1999, A & AS, 137, 185 [NASA ADS] [Google Scholar]
  75. Masciadri, E., Lascaux, F., Turchi, A., & Fini, L. 2017, MNRAS, 466, 520 [CrossRef] [Google Scholar]
  76. McElreath, R. 2016, Rethinking: Statistical Rethinking book package. R package version 1.60. [Google Scholar]
  77. McIlveen, R. 1992, Fundamentals of Weather and Climate, 2nd edn. (Oxford: Oxford University Press) [CrossRef] [Google Scholar]
  78. McInnes, B., & Walker, M. F. 1974, PASP, 86, 529 [NASA ADS] [CrossRef] [Google Scholar]
  79. McKinney, W. 2010, in Proceedings of the 9th Python in Science Conference [Google Scholar]
  80. Meehl, G. A. 1995, Bull. Am. Meteorol. Soc., 76, 951 [CrossRef] [Google Scholar]
  81. Meehl, G. A., Boer, G. J., Covey, C., Latif, M., & Stouffer, R. J. 2000, Bull. Am. Meteorol. Soc., 81, 313 [CrossRef] [Google Scholar]
  82. Meyer, M. R., Currie, T., Guyon, O., et al. 2018, ArXiv e-prints, [arXiv:1804.03218] [Google Scholar]
  83. Molinari, E., & Hernandez, N. 2012, in Observatory Operations: Strategies, Processes, and Systems IV, 8448 (SPIE), 844822 [CrossRef] [Google Scholar]
  84. Molinari, E., & Hernandez, N. 2014, in Observatory Operations: Strategies, Processes, and Systems V, 9149 (SPIE), 914927 [Google Scholar]
  85. Moreno-Chamarro, E., Caron, L.-P., Loosveldt Tomas, S., et al. 2022, Geosci. Model Dev, 15, 269 [NASA ADS] [CrossRef] [Google Scholar]
  86. Muñoz-Tuñón, C., Vernin, J., & Varela, A. M. 1997, A & AS, 125, 183 [Google Scholar]
  87. Navarra, A., Stern, W. F., & Miyakoda, K. 1994, J. Climate, 7, 1169 [NASA ADS] [CrossRef] [Google Scholar]
  88. Osborn, J., & Sarazin, M. 2018, MNRAS, 480, 1278 [NASA ADS] [CrossRef] [Google Scholar]
  89. Otarola, A., De Breuck, C., Travouillon, T., et al. 2019, PASP, 131, 045001 [NASA ADS] [CrossRef] [Google Scholar]
  90. Parker, W. S. 2016, Bull. Am. Meteorol. Soc., 97, 1565 [CrossRef] [Google Scholar]
  91. Pathak, P., dit de la Roche, D. J. M. P., Kasper, M., et al. 2021, A & A, 652, A121 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  92. Payne, A. E., Demory, M.-E., Leung, L. R., et al. 2020, Nat. Rev. Earth Environ., 1, 143 [NASA ADS] [CrossRef] [Google Scholar]
  93. Peixoto, J. P., Oort, A. H., Covey, C., & Taylor, K. 1992, Phys. Today, 45, 8 [Google Scholar]
  94. Pena-Ortiz, C., Gallego, D., Ribera, P., Ordonez, P., & Alvarez-Castro, M. D. C. 2013, J. Geophys. Res.: Atmos., 118, 2702 [NASA ADS] [CrossRef] [Google Scholar]
  95. Plauchu-Frayn, I., Colorado, E., Richer, M. G., & Herrera-Vázquez, C. 2020, Rev. Mex. Astron. Astrofıs., 56, 295 [Google Scholar]
  96. Querel, R. R., Kerber, F., Lo Curto, G., et al. 2010, in Ground-based and Airborne Telescopes III, Proc. SPIE, 7733, 773349 [NASA ADS] [CrossRef] [Google Scholar]
  97. Racine, R. 2005, PASP, 117, 401 [NASA ADS] [CrossRef] [Google Scholar]
  98. R Core Team. 2019, R: a language and environment for statistical computing. [Google Scholar]
  99. Reichler, T., & Kim, J. 2008, Am. Meteorol. Soc., 89, 303 [NASA ADS] [CrossRef] [Google Scholar]
  100. Riahi, K., Rao, S., Krey, V., et al. 2011, Climatic Change, 109, 33 [NASA ADS] [CrossRef] [Google Scholar]
  101. Riahi, K., van Vuuren, D. P., Kriegler, E., et al. 2017, Global Environ. Change, 42, 153 [CrossRef] [Google Scholar]
  102. Ribeiro, L., Kretschmer, N., Nascimento, J., et al. 2015, Hydrol. Sci. J., 60, 1840 [CrossRef] [Google Scholar]
  103. Roberts, M. 2017, MOHC HadGEM3-GC31-HM model output prepared for CMIP6 HighResMIP [Google Scholar]
  104. Roberts, M. J., Vidale, P. L., Mizielinski, M. S., et al. 2015, J. Climate, 28, 574 [CrossRef] [Google Scholar]
  105. Roberts, M. J., Hewitt, H. T., Hyder, P., et al. 2016, Geophys. Res. Lett., 43, 10, 430 [Google Scholar]
  106. Roberts, C. D., Senan, R., Molteni, F., Boussetta, S., & Keeley, S. 2017, CMIP6 Citation ’ECMWF ECMWF-IFS-HR model output prepared for CMIP6 HighResMIP’ [Google Scholar]
  107. Roberts, M., Hewitt, H., Iovino, D., et al. 2018, in EGU General Assembly Conference Abstracts (Adrian New), 17903 [Google Scholar]
  108. Roddier, F. 1981, Progr. Opt., 19, 281 [NASA ADS] [CrossRef] [Google Scholar]
  109. Sarazin, M. 1988, VLT Report Nr. 65: Comparison of Meteorological Conditions on Chilean Sites - Annual Summary 1986, Tech. rep., European Southern Observatory [Google Scholar]
  110. Sarazin, M. 2001, Atmospheric Time Constants at Paranal during VLTI VINCI & Siderostats Comissioning [Google Scholar]
  111. Sarazin, M., & Roddier, F. 1990, A & A, 227, 294 [NASA ADS] [Google Scholar]
  112. Sarazin, M., & VLT Site Selection Working Group. 1990, VLT Report Nr. 62, Tech. rep., European Southern Observatory [Google Scholar]
  113. Sarazin, M., Melnick, J., Navarrete, J., & Lombardi, G. 2008, The Messenger, 132, 11 [NASA ADS] [Google Scholar]
  114. Sarazin, M., Le Louarn, M., Ascenso, J., Lombardi, G., & Navarrete, J. 2013, 3rd AO4ELT Conference – Adaptive Optics for Extremely Large Telescopes [Google Scholar]
  115. Schiemann, R., Vidale, P. L., Hatcher, R., & Roberts, M. 2019, NERC HadGEM3-GC31-HM model output prepared for CMIP6 HighResMIP [Google Scholar]
  116. Schoeck, M., Els, S., Riddle, R., et al. 2009, PASP, 121, 384 [CrossRef] [Google Scholar]
  117. Scoccimarro, E., Bellucci, A., & Peano, D. 2017, CMCC CMCC-CM2-VHR4 model output prepared for CMIP6 HighResMIP [Google Scholar]
  118. Shaffrey, L. C., Stevens, I., Norton, W. A., et al. 2009, J. Climate, 22, 1861 [NASA ADS] [CrossRef] [Google Scholar]
  119. Stevens, B., Satoh, M., Auger, L., et al. 2019, Progr. Earth Planet. Sci., 6, 61 [NASA ADS] [CrossRef] [Google Scholar]
  120. Tallis, M., Bailey, V. P., Macintosh, B., et al. 2020, J. Astron. Telescopes Instrum. Syst., 6, 1 [CrossRef] [Google Scholar]
  121. Tatarski, V. I., Silverman, R. A., & Chako, N. 1961, Phys. Today, 14, 46 [NASA ADS] [CrossRef] [Google Scholar]
  122. Tatarskii, V. I. 1971, The Effects of the Turbulent Atmosphere on Wave Propagation (Jerusalem: Israel Program for Scientific Translations) [Google Scholar]
  123. Taylor, K. E. 2001, J. Geophys. Res. Atmos., 106, 7183 [NASA ADS] [CrossRef] [Google Scholar]
  124. Taylor, K. E., Juckes, M., Balaji, V., et al. 2018, CMIP6_global_attributes_filenames_CVs - Google Docs [Google Scholar]
  125. Team, S. D. 2020, RStan: the R interface to Stan. R package version 2.19.3 [Google Scholar]
  126. Teare, S., Thompson, L., Gino, M., & Palmer, K. 2000, PASP, 112, 1496 [CrossRef] [Google Scholar]
  127. Trenberth, K. E., Fasullo, J., & Smith, L. 2005, Climate Dyn., 24, 741 [NASA ADS] [CrossRef] [Google Scholar]
  128. Unidata. 2020, Network Common Data Form (netCDF) version 1.5.3, https://www.unidata.ucar.edu/software/netcdf/ [Google Scholar]
  129. Vannière, B., Demory, M. E., Vidale, P. L., et al. 2020, Climate Dyn., 52, 6817 [Google Scholar]
  130. Vernin, J. 1986, in Proc. SPIE, 0628 [Google Scholar]
  131. Vernin, J. & Muoz-Tuon, C. 1994, A & A, 284, 311 [NASA ADS] [Google Scholar]
  132. Vernin, J., Muñoz-Tuñón, C., Sarazin, M., et al. 2011, PASP, 123, 1334 [CrossRef] [Google Scholar]
  133. Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020, Nat. Methods, 17, 261 [Google Scholar]
  134. Voldoire, A. 2019, CNRM-CERFACS CNRM-CM6-1-HR model output prepared for CMIP6 HighResMIP [Google Scholar]
  135. von Storch, J.-S., Putrasahan, D., Lohmann, K., et al. 2017, MPI-M MPI-ESM1.2-XR model output prepared for CMIP6 HighResMIP [Google Scholar]
  136. Walker, C., Chinigò, D., & Dubow, S. 2019, J. Southern Afr. Stud., 45, 627 [NASA ADS] [CrossRef] [Google Scholar]
  137. Ward, D. J., & Galewsky, J. 2014, J. Geophys. Res.: Earth Surf., 119, 2048 [NASA ADS] [CrossRef] [Google Scholar]
  138. Wedi, N. P. 2014, Philos. Trans. Roy. Soc. A: Math. Phys. Eng. Sci., 372 [Google Scholar]
  139. Wickham, H. 2016, Ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag New York) [Google Scholar]
  140. Wiedner, M. C., Hills, R. E., Carlstrom, J. E., & Lay, O. P. 2001, ApJ, 553, 1036 [NASA ADS] [CrossRef] [Google Scholar]
  141. Willett, K. M., Dunn, R. J. H., Thorne, P. W., et al. 2014, Climate Past, 10, 1983 [NASA ADS] [CrossRef] [Google Scholar]
  142. Wu, T., Lu, Y., Fang, Y., et al. 2019, Geoscientific Model Dev., 12, 1573 [NASA ADS] [CrossRef] [Google Scholar]
  143. Wyant, M. C., Wood, R., Bretherton, C. S., et al. 2010, Atmos. Chem. Phys., 10, 4757 [NASA ADS] [CrossRef] [Google Scholar]
  144. Zhang, C., Wang Dr., Y., Lauer, A., & Hamilton, K. 2012, MonthlyWeather Rev., 140, 3259 [NASA ADS] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.