Free Access
Issue
A&A
Volume 658, February 2022
Article Number A141
Number of page(s) 11
Section Stellar structure and evolution
DOI https://doi.org/10.1051/0004-6361/202142454
Published online 11 February 2022
  1. Achilleos, A., & Delaigle, A. 2012, Stat. Comput., 22, 563 [Google Scholar]
  2. Ali, N., & Peebles, D. 2013, Human Factors, 55, 183 [Google Scholar]
  3. Ameijeiras-Alonso, J., Crujeiras, R. M., & Rodríguez-Casal, A. 2019, Test, 28, 900 [CrossRef] [Google Scholar]
  4. Ameijeiras-Alonso, J., Crujeiras, R. M., & Rodríguez-Casal, A. 2021, J. Stat. Software, 97, 1 [Google Scholar]
  5. Bastian, N., & Lardo, C. 2018, ARA&A, 56, 83 [Google Scholar]
  6. Bezdek, J., & Pal, N. 1998, IEEE Trans. Syst. Man Cybern. Part B (Cybern.), 28, 301 [CrossRef] [Google Scholar]
  7. Carretta, E. 2015, ApJ, 810, 148 [Google Scholar]
  8. Carretta, E., Bragaglia, A., Gratton, R. G., et al. 2009, A&A, 505, 117 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  9. Carretta, E., Lucatello, S., Gratton, R. G., Bragaglia, A., & D’Orazi, V. 2011, A&A, 533, A69 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  10. Carroll, R. J., & Hall, P. 1988, J. Am. Stat. Assoc., 83, 1184 [Google Scholar]
  11. Dalessandro, E., Salaris, M., Ferraro, F. R., et al. 2011, MNRAS, 410, 694 [NASA ADS] [CrossRef] [Google Scholar]
  12. D’Antona, F., & Caloi, V. 2008, MNRAS, 390, 693 [CrossRef] [Google Scholar]
  13. D’Antona, F., Bellazzini, M., Caloi, V., et al. 2005, ApJ, 631, 868 [Google Scholar]
  14. de Amorim, R. C., & Hennig, C. 2015, Inf. Sci., 324, 126 [Google Scholar]
  15. Delaigle, A., & Gijbels, I. 2004, Ann. Inst. Stat. Math., 56, 19 [CrossRef] [Google Scholar]
  16. Efromovich, S. 1997, J. Amer. Stat. Assoc., 92, 526 [Google Scholar]
  17. Ester, M., Kriegel, H. P., Sander, J., & Xu, X. 1996, Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (AAAI Press), 226 [Google Scholar]
  18. Feigelson, E. D., & Babu, G. J. 2012, Modern Statistical Methods for Astronomy with R applications (Cambridge University Press) [CrossRef] [Google Scholar]
  19. Fisher, R. A. 1936, Ann. Eugenics, 7, 179 [CrossRef] [Google Scholar]
  20. Gratton, R. G., Johnson, C. I., Lucatello, S., D’Orazi, V., & Pilachowski, C. 2011, A&A, 534, A72 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  21. Guerço, R., Cunha, K., Smith, V. V., et al. 2019, ApJ, 876, 43 [CrossRef] [Google Scholar]
  22. Härdle, W. K., & Simar, L. 2012, Applied Multivariate Statistical Analysis (Springer) [CrossRef] [Google Scholar]
  23. Hartigan, J. A., & Hartigan, P. M. 1985, Ann. Stat., 13, 70 [Google Scholar]
  24. He, H. P., Li, P. Z., Huang, L., Ji, Y. X., Wang, C. D., et al. 2020, in Database Systems for Advanced Applications, eds. Y. Nah, B. Cui, S. W. Lee, et al. (Cham: Springer International Publishing), 671 [CrossRef] [Google Scholar]
  25. Hong, S., Lim, D., Chung, C., et al. 2021, AJ, 162, 130 [CrossRef] [Google Scholar]
  26. Kaufman, L., & Rousseeuw, P. J. 1990, Finding Groups in Data: An Introduction to Cluster Analysis (New York: John Wiley and Sons) [Google Scholar]
  27. Kumar, M., & Patel, N. R. 2007, Computat. Stat. Data Anal., 51, 6084 [Google Scholar]
  28. Lee, J.-W., Kang, Y.-W., Lee, J., & Lee, Y.-W. 2009, Nature, 462, 480 [Google Scholar]
  29. Maechler, M. 2021, diptest: Hartigan’s Dip Test Statistic for Unimodality - Corrected, r package version 0.76-0 [Google Scholar]
  30. Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., & Hornik, K. 2021, cluster: Cluster Analysis Basics and Extensions, r package version 2.1.2 – For new features, see the ‘Changelog’ file (in the package source) [Google Scholar]
  31. Marino, A. F., Villanova, S., Piotto, G., et al. 2008, A&A, 490, 625 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  32. Marino, A. F., Milone, A. P., Yong, D., et al. 2017, ApJ, 843, 66 [NASA ADS] [CrossRef] [Google Scholar]
  33. Milone, A. P., Marino, A. F., Piotto, G., et al. 2015, ApJ, 808, 51 [NASA ADS] [CrossRef] [Google Scholar]
  34. Milone, A. P., Piotto, G., Renzini, A., et al. 2017, MNRAS, 464, 3636 [Google Scholar]
  35. Pal, M., Kumar, M., Peri, R., et al. 2021, IEEE/ACM Trans. Audio Speech Lang. Process., 29, 1204 [CrossRef] [Google Scholar]
  36. Pankowska, P., & Oberski, D. L. 2020, ArXiv e-prints [arXiv:2005.11743] [Google Scholar]
  37. Pasquato, M., & Milone, A. 2019, ArXiv e-prints [arXiv:1906.04983] [Google Scholar]
  38. Pinker, S. 1990, in Artificial Intelligence and the Future of Testing, ed. R. Freedle (Psychology Press), 73 [Google Scholar]
  39. Piotto, G., Bedin, L. R., Anderson, J., et al. 2007, ApJ, 661, L53 [NASA ADS] [CrossRef] [Google Scholar]
  40. R Core Team 2021, R: A Language and Environment for Statistical Computing (Vienna, Austria: R Foundation for Statistical Computing) [Google Scholar]
  41. Rousseeuw, P. J. 1987, J. Comput. Appl. Math., 20, 53 [Google Scholar]
  42. Saxena, A., Prasad, M., Gupta, A., et al. 2017, Neurocomputing, 267, 664 [CrossRef] [Google Scholar]
  43. Sheather, S. J., & Jones, M. C. 1991, J. Roy. Stat. Soc., Ser. B Methodol., 53, 683 [Google Scholar]
  44. Simpson, J. D., Cottrell, P. L., & Worley, C. C. 2012, MNRAS, 427, 1153 [NASA ADS] [CrossRef] [Google Scholar]
  45. Simpson, J. D., Martell, S. L., & Navin, C. A. 2017, MNRAS, 465, 1123 [NASA ADS] [CrossRef] [Google Scholar]
  46. Su, Y., Reedy, J., & Carroll, R. J. 2018, Stat. Sin., 28, 2337 [Google Scholar]
  47. Venables, W., & Ripley, B. 2002, Modern Applied Statistics with S, Statistics and Computing (Springer) [CrossRef] [Google Scholar]
  48. Wand, M. P., & Jones, M. C. 1994, Comput. Stat., 9, 97 [Google Scholar]
  49. Wang, X.-F., & Wang, B. 2011, J. Stat. Software, 39, 1 [NASA ADS] [CrossRef] [Google Scholar]
  50. Wang, L., Kroupa, P., Takahashi, K., & Jerabkova, T. 2020, MNRAS, 491, 440 [Google Scholar]
  51. Wertheimer, M. 1938, in A Source Book of Gestalt Psychology, ed. W. D. Ellis (Kegan Paul, Trench, Trubner and Company), 71 [CrossRef] [Google Scholar]
  52. Zhang, C. H. 1990, Ann. Stat., 18, 806 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.