Open Access
Issue
A&A
Volume 653, September 2021
Article Number A80
Number of page(s) 14
Section Planets and planetary systems
DOI https://doi.org/10.1051/0004-6361/202140789
Published online 10 September 2021
  1. Abraham, M. J., Murtola, T., Schulz, R., et al. 2015, SoftwareX, 1-2, 19 [Google Scholar]
  2. Baldwin, H. L., & McGuinness, C. L. 1976, A Primer on Ground Water, Technical Report, United States Departement of the Interior [Google Scholar]
  3. Barnes, J. W., Bow, J., Schwartz, J., et al. 2011, Icarus, 216, 136 [CrossRef] [Google Scholar]
  4. Batschinski, A. J. 1913, Z. Physik. Chim., 84, 643 [Google Scholar]
  5. Bear, J. 1972, Dynamics of Fluids in Porous Media (New York: Dover Publications) [Google Scholar]
  6. Bories, S. A., & Combarnous, M. A. 1973, J. Fluid Mech., 57, 63 [NASA ADS] [CrossRef] [Google Scholar]
  7. Cable, M. L., Vu, T. H., Hodyss, R., et al. 2014, Geophys. Res. Lett., 41, 5396 [NASA ADS] [CrossRef] [Google Scholar]
  8. Cable, M. L., Vu, T. H., Malaska, M. J., et al. 2019, ACS Earth Space Chem., 3, 2808 [NASA ADS] [CrossRef] [Google Scholar]
  9. Cable, M. L., Vu, T. H., Malaska, M. J., et al. 2020, ACS Earth Space Chem., 4, 1375 [NASA ADS] [CrossRef] [Google Scholar]
  10. Carrasco, N., Schmitz-Afonso, I., Bonnet, J.-Y., et al. 2009, J. Phys. Chem. A, 113, 11195 [CrossRef] [Google Scholar]
  11. Chapman, S., & Cowling, T. G. 1970, The Mathematetical Theory of Non-Uniform Gases (Cambridge University Press, Cambridge) [Google Scholar]
  12. Chilingar, G. V., Buryakovsky, L. A., Eremenko, N. A., & Gorfunkel, M. V. 2005, Geology and Geochemistry of Oil and Gas (Amsterdam: Elsevier) [Google Scholar]
  13. Choukroun, M., & Sotin, C. 2012, Geophys. Res. Lett., 39, 4201 [Google Scholar]
  14. Choukroun, M., Grasset, O., Tobie, G., & Sotin, C. 2010, Icarus, 205, 581 [NASA ADS] [CrossRef] [Google Scholar]
  15. Cordier, D., Mousis, O., Lunine, J. I., et al. 2010, ApJ, 721, L117 [NASA ADS] [CrossRef] [Google Scholar]
  16. Cordier, D., Barnes, J. W., & Ferreira, A. G. 2013, Icarus, 226, 1431 [NASA ADS] [CrossRef] [Google Scholar]
  17. Cordier, D., Cornet, T., Barnes, J. W., et al. 2016, Icarus, 270, 41 [CrossRef] [Google Scholar]
  18. Cordier, D., García-Sánchez, F., Justo-García, D. N., & Liger-Belair, G. 2017, Nat. Astron., 1, 0102 [NASA ADS] [CrossRef] [Google Scholar]
  19. Cordier, D., Bonhommeau, D. A., Port, S., et al. 2019, ApJ, 880, 82 [NASA ADS] [CrossRef] [Google Scholar]
  20. Corlies, P., Hayes, A. G., Birch, S. P. D., et al. 2017, Geophys. Res. Lett., 44, 11 [Google Scholar]
  21. Coutelier, M., Cordier, D., Seignovert, B., et al. 2021, Icarus, 364, 114464 [CrossRef] [Google Scholar]
  22. Czaplinski, E., Yu, X., Dzurilla, K., & Chevrier, V. 2020, Planet. Sci. J., 1, 76 [NASA ADS] [CrossRef] [Google Scholar]
  23. Darcy, R. P. G. 1856, Mémoires Présentés à l’Académie des Sciences de l’Institut de France, 14, 141 [Google Scholar]
  24. Elachi, C., Wall, S., Allison, M., et al. 2005, Science, 308, 970 [NASA ADS] [CrossRef] [Google Scholar]
  25. Eshleman, V. R., Lindal, G. F., & Tyler, G. L. 1983, Science, 221, 53 [NASA ADS] [CrossRef] [Google Scholar]
  26. Espósito, R. O., Rodrigues Alijó, P. H., Scilipoti, J. A., & Tavares, F. W. 2017, Compositional Grading in Oil and Gas Reservoirs (Oxford, United Kingdom: Gulf Professional Publishing) [Google Scholar]
  27. Faulk, S. P., Lora, J. M., Mitchell, J. L., & Milly, P. C. D. 2020, Nat. Astron., 4, 390 [NASA ADS] [CrossRef] [Google Scholar]
  28. Feistel, R., & Wagner, Y. 2006, J. Phys. Chem. Ref. Data, 35 [Google Scholar]
  29. Flasar, F. M. 1983, Science, 221, 55 [NASA ADS] [CrossRef] [Google Scholar]
  30. Flasar, F. M., Samuelson, R. E., & Conrath, B. J. 1981, Nature, 292, 693 [NASA ADS] [CrossRef] [Google Scholar]
  31. Fulchignoni, M., Ferri, F., Angrilli, F., et al. 2005, Nature, 438, 785 [NASA ADS] [CrossRef] [Google Scholar]
  32. Galliero, G., Bataller, H., Bazile, J.-P., et al. 2017, npj Microgravity, 3, 20 [Google Scholar]
  33. Ghorayeb, K., & Firoozabadi, A. 2000, AIChE J., 46, 883 [Google Scholar]
  34. Ghorayeb, K., Firoozabadi, A., & Anraku, T. 2003, SPE J., 8, 114 [CrossRef] [Google Scholar]
  35. Gilliam, A. E., & Lerman, A. 2016, Icarus, 275, 252 [CrossRef] [Google Scholar]
  36. Griffiths, D. H., & Barker, R. D. 1993, J. Appl. Geophy., 29, 211 [NASA ADS] [CrossRef] [Google Scholar]
  37. Griffith, C. A., Lora, J. M., Turner, J., et al. 2012, Nature, 486, 237 [NASA ADS] [CrossRef] [Google Scholar]
  38. Gross, J., & Sadowski, G. 2001, Ind. Eng. Chem. Res., 40, 1244 [CrossRef] [Google Scholar]
  39. Haase, R. 1969, Thermodynamics of Irreversible Processes (Reading, MA, USA: Addison Wesley), 201 [Google Scholar]
  40. Hayes, A. G. 2016, Ann. Rev. Earth Planet Sci., 44, 57 [NASA ADS] [CrossRef] [Google Scholar]
  41. Hayes, A., Aharonson, O., Callahan, P., et al. 2008, Geophys. Res. Lett., 35, 9204 [NASA ADS] [CrossRef] [Google Scholar]
  42. Hayes, A. G., Birch, S. P. D., Dietrich, W. E., et al. 2017, Geophys. Res. Lett., 44, 11 [Google Scholar]
  43. Hildebrand, J. H. 1971, Science, 174, 490 [NASA ADS] [CrossRef] [Google Scholar]
  44. Hofgartner, J. D., Hayes, A. G., Campbell, D. B., et al. 2020, Nat. Commun., 11, 2829 [NASA ADS] [CrossRef] [Google Scholar]
  45. Horvath, D. G., Andrews-Hanna, J. C., Newman, C. E., Mitchell, K. L., & Stiles, B. W. 2016, Icarus, 277, 103 [CrossRef] [Google Scholar]
  46. Hu, W. R., Zhao, J. F., Long, M., et al. 2014, Microgravity Sci. Technol., 26, 159 [NASA ADS] [CrossRef] [Google Scholar]
  47. Jacovi, R., & Bar-Nun, A. 2008, Icarus, 196, 302 [NASA ADS] [CrossRef] [Google Scholar]
  48. Jennings, D. E., Cottini, V., Nixon, C. A., et al. 2016, ApJ, 816, L17 [CrossRef] [Google Scholar]
  49. Kalousova, K.,& Sotin, C. 2020, Geophys. Res. Lett., 47, e2020GL087481 [NASA ADS] [CrossRef] [Google Scholar]
  50. Kamata, S. 2018, J. Geophys. Res. Planets, 123, 93 [NASA ADS] [CrossRef] [Google Scholar]
  51. Kossacki, K. J., & Lorenz, R. D. 1996, PSS, 44, 1029 [NASA ADS] [Google Scholar]
  52. Kuiper, G. P. 1944, ApJ, 100, 378 [NASA ADS] [CrossRef] [Google Scholar]
  53. Kumar, P., & Chevrier, V. F. 2020, ACS Earth Space Chem., 4, 241 [NASA ADS] [CrossRef] [Google Scholar]
  54. Latini, G., Passerini, G., & Polonara, F. 1996, Int. J. Thermophys., 17, 85 [NASA ADS] [CrossRef] [Google Scholar]
  55. Le Gall, A., Janssen, M. A., Paillou, P., et al. 2010, Icarus, 207, 948 [CrossRef] [Google Scholar]
  56. Lewis, J. S. 1971, Icarus, 15, 174 [NASA ADS] [CrossRef] [Google Scholar]
  57. Liu, Z. Y.-C., Radebaugh, J., Harris, R. A., et al. 2016, Icarus, 270, 14 [NASA ADS] [CrossRef] [Google Scholar]
  58. Lodders, K. 2003, ApJ, 591, 1220 [Google Scholar]
  59. Lodders, K. 2010, ApSSP, 16, 379 [NASA ADS] [Google Scholar]
  60. Lodders, K. 2019, ArXiv e-prints [arXiv:1912.00844] [Google Scholar]
  61. Lorenz, R. D., Mitchell, K. L., Kirk, R. L., et al. 2008, Geophys. Res. Lett., 35, L02406 [NASA ADS] [CrossRef] [Google Scholar]
  62. Lorenz, R. D., Turtle, E. P., Barnes, J. W., et al. 2018, Dragonfly: A Rotorcraft Lander Concept for Scientific Exploration at Titan, Technical Repoert 3, Johns Hopkins APL [Google Scholar]
  63. Loveday, J. S., Nelmes, R. J., Guthrie, M., et al. 2001, Nature, 410, 661 [CrossRef] [PubMed] [Google Scholar]
  64. Lowrie, W. 2010, Fundamentals of Geophysics (Cambridge UK: Cambridge University Press) [Google Scholar]
  65. Lunine, J. I., & Stevenson, D. J. 1987, Icarus, 70, 61 [NASA ADS] [CrossRef] [Google Scholar]
  66. Luspay-Kuti, A., Chevrier, V. F., Cordier, D., et al. 2015, EPSL, 410C, 75 [Google Scholar]
  67. MacKenzie, S. M., Barnes, J. W., Sotin, C., et al. 2014, Icarus, 243, 191 [CrossRef] [Google Scholar]
  68. MacKenzie, S. M., Barnes, J. W., Hofgartner, J. D., et al. 2019, Nat. Astron., 3, 506 [NASA ADS] [CrossRef] [Google Scholar]
  69. Mansi, S. S., Siepmann, J. I., & Tsapatsis, M. 2017, AIChE J., 63, 5098 [Google Scholar]
  70. Martin, M. G., & Siepmann, J. I. 1998, J. Phys. Chem. B, 102, 2569 [CrossRef] [Google Scholar]
  71. McConville, C. A., Tao, Y., Evans, H. A., et al. 2020, Chem. Commun., 56, 13520 [Google Scholar]
  72. Metcalfe, R. S., Vogel, J. L., & Morris, R. W. 1988, SPE Reservoir Eng., 3, 1025 [Google Scholar]
  73. Mousis, O., Choukroun, M., Lunine, J. I., & Sotin, C. 2014, Icarus, 239, 39 [CrossRef] [Google Scholar]
  74. Mousis, O., Lunine, J. I., Hayes, A. G., & Hofgartner, J. D. 2016, Icarus, 270, 37 [NASA ADS] [CrossRef] [Google Scholar]
  75. Muñoz-Iglesias, V., Choukroun, M., Vu, T. H., et al. 2018, ACS Earth Space Chem., 2, 135 [Google Scholar]
  76. Müller-Wodarg, I., Griffith, C. A., Lellouch, A., & Cravens, T. E. E. 2014, TITAN – Interior, Surface, Atmosphere, and Space Environment, eds. I. Müller-Wodarg, C. A. Griffith, A. Lellouch, & T. E. Cravens (New York: Cambridge University Press) [Google Scholar]
  77. Nazki, M. A., Chopra, T., & Chandrappa, A. K. 2020, Constr. Build. Mater., 238, 117693 [Google Scholar]
  78. Nield, D. A., & Bejan, A. 2017, Convection in Porous Media, 5th edn. (Cham, Switzerland: Springer) [Google Scholar]
  79. Niemann, H. B., Atreya, S. K., Bauer, S. J., et al. 2005, Nature, 438, 779 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  80. Niemann, H. B., Atreya, S. K., Demick, J. E., et al. 2010, J. Geophys. Res., 115, E12006 [Google Scholar]
  81. Nimmo, F., & Bills, B. G. 2010, Icarus, 208, 896 [NASA ADS] [CrossRef] [Google Scholar]
  82. Nixon, C. A., Lorenz, R. D., Achterberg, R. K., et al. 2018, Planet. Space Sci., 155, 50 [CrossRef] [Google Scholar]
  83. Nougier, J. P. 1987, Méthodes de Calcul Numérique (Paris: Masson) [Google Scholar]
  84. Obidi, O. C. 2014, PhD thesis, Imperial College London, UK [Google Scholar]
  85. Osegovic, J. P., & Max, M. D. 2005, J. Geophys. Res., 110, E08004 [NASA ADS] [Google Scholar]
  86. Owen, T. 1982, Sci. Am., 246, 98 [NASA ADS] [CrossRef] [Google Scholar]
  87. Pan, S., Jiang,C., Yan, Y., Kawaji, M., & Saghir, Z. 2006, J. Non-Equilib. Thermodyn., 41, 47 [Google Scholar]
  88. Parrish, W. R., & Hiza, M. J. 1974, Adv. Cryog. Eng., 19, 300 [Google Scholar]
  89. Petuya, C., Choukroun, M., Vu, T. H., Sotin, C., & Davies, A. G. 2020, ACS Earth Space Chem., 4, 526 [NASA ADS] [CrossRef] [Google Scholar]
  90. Poling, B. E., Prausnitz, J. M., & O’Connell, J. 2007, The Properties of Gases and Liquids, 5th edn. (Englewood Cliffs: McGraw-Hill Professional) [Google Scholar]
  91. Pollack, H. N., Hurter, S. J., & Johnson, J. R. 1993, Rev. Geophys., 31, 267 [NASA ADS] [CrossRef] [Google Scholar]
  92. Potoff, J. J., & Siepmann, J. I. 2001, AIChE J., 47, 1676 [CrossRef] [Google Scholar]
  93. Powers, R. W., Mattox, R. W., & Johnston, H. L. 1954, J. Am. Chem. Soc., 76, 5968 [Google Scholar]
  94. Reynolds, J. M. 2011, An Introduction to Applied and Environmental Geophysics, 2nd edn. (Chichester, UK: John Wiley & Sons) [Google Scholar]
  95. Sagan, C., & Dermott, S. F. 1982, Nature, 300, 731 [NASA ADS] [CrossRef] [Google Scholar]
  96. Schurmeier, L. R., & Dombard, A. J. 2018, Icarus, 305, 314 [CrossRef] [Google Scholar]
  97. Shah, M. S., Siepmann, J. I., & Tsapatsis, M. 2017, AIChE J., 63, 5098 [Google Scholar]
  98. Sloan, E. D. 1998, Clathrates Hydrates of Natural Gases (New York: Marcel Decker) [Google Scholar]
  99. Sohl, F., Solomonidou, A., Wagner, F. W., et al. 2014, J. Geophys. Res. Planets, 119, 1013 [NASA ADS] [CrossRef] [Google Scholar]
  100. Soret, C. 1879, Arch. Sci. Phys. Nat., 2, 48 [Google Scholar]
  101. Sotin, C., Lawrence, K. J., Reinhardt, B., et al. 2012, Icarus, 221, 768 [CrossRef] [Google Scholar]
  102. Stephan, K., Jaumann, R., Brown, R. H., et al. 2010, Geophys. Res. Lett., 37, L07104 [Google Scholar]
  103. Stofan, E. R., Elachi, C., Lunine, J. I., et al. 2007, Nature, 445, 61 [NASA ADS] [CrossRef] [Google Scholar]
  104. Tan, S. P., Kargel, J. S., & Marion, G. M. 2013, Icarus, 222, 53 [CrossRef] [Google Scholar]
  105. Temeng, K. O., Al-Sadeg, M. J., & Al-Mulhim, W. A. 1998, Compositional Grading in the Ghawar Khuff Reservoirs (Society of Petroleum Engineers), 685 [Google Scholar]
  106. Thomas, C., Mousis, O., Ballenegger, V., & Picaud, S. 2007, A&A, 474, L17 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  107. Thomas, C., Picaud, S., Mousis, O., & Ballenegger, V. 2008, PSS, 56, 1607 [Google Scholar]
  108. Tobie, G., Lunine, J. I., & Sotin, C. 2006, Nature, 440, 61 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  109. Tobie, G., Gautier, D., & Hersant, F. 2012, ApJ, 752, 125 [CrossRef] [Google Scholar]
  110. Turtle, E. P., Perry, J. E., Barbara, J. M., et al. 2018, Geophys. Res. Lett., 45, 5320 [NASA ADS] [CrossRef] [Google Scholar]
  111. Turtle, E. P., Trainer, M. G., Barnes, J. W., et al. 2020, in 51st Lunar and Planetary Science Conference (Houston: Lunar and Planetary Institute), Abstract #2288 [Google Scholar]
  112. Tyler, G. L., Eshleman, V. R., Anderson, J. D., et al. 1981, Science, 212, 201 [NASA ADS] [CrossRef] [Google Scholar]
  113. van der Waals, J. H., & Platteeuw, J. C. 1959, Clathrate Solutions. In: Advances in Chemical Physics, (New York: Interscience), 2, 1 [Google Scholar]
  114. Vogel, E., & Weiss, A. 1981, Ber. Bunsenges. Phys. Chem, 85, 539 [Google Scholar]
  115. Vu, T. H., Cable, M. L., Choukroun, M., Hodyss, R. & Beauchamp, P. 2014, J. Phys. Chem. A, 118, 4087 [NASA ADS] [CrossRef] [Google Scholar]
  116. Vu, T. H., Choukroun, M., Sotin, C., & Muñoz-Iglesias, V. Maynard-Casely, H. E. 2020a, Geophys. Res. Lett., 47, e2019GL086265 [Google Scholar]
  117. Vu, T. H., Maynard-Casely, H. E., Cable, M. L., et al. 2020b, J. Appl. Crystallogr., 53, 1524 [Google Scholar]
  118. Wilke, C. R., & Chang, P. 1955, AIChE J., 1, 264 [Google Scholar]
  119. Wood, C. A., & Radebaugh, J. 2020, J. Geophys. Res., 125, e06036 [NASA ADS] [CrossRef] [Google Scholar]
  120. Yung, Y. L., Allen, M., & Pinto, J. P. 1984, ApJS, 55, 465 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.