Free Access
Issue
A&A
Volume 653, September 2021
Article Number A22
Number of page(s) 16
Section Numerical methods and codes
DOI https://doi.org/10.1051/0004-6361/202140369
Published online 03 September 2021
  1. Ackermann, S., Schawinski, K., Zhang, C., Weigel, A. K., & Turp, M. D. 2018, MNRAS, 479, 415 [NASA ADS] [CrossRef] [Google Scholar]
  2. Agatonovic-Kustrin, S., & Beresford, R. 2000, J. Pharm. Biomed. Anal., 22, 717 [Google Scholar]
  3. Amacker, J., Balunas, W., Beresford, L., et al. 2020, J. High Energy Phys., 2020, 115 [Google Scholar]
  4. Bailer-Jones, C. A. L., Fouesneau, M., & Andrae, R. 2019, MNRAS, 490, 5615 [CrossRef] [Google Scholar]
  5. Bellm, E. C., Kulkarni, S. R., Graham, M. J., et al. 2019, PASP, 131, 018002 [NASA ADS] [CrossRef] [Google Scholar]
  6. Boughorbel, S., Jarray, F., & El-Anbari, M. 2017, PLoS ONE, 12, e0177678 [NASA ADS] [CrossRef] [Google Scholar]
  7. Breiman, L. 2001, Mach. Learn., 45, 5 [CrossRef] [Google Scholar]
  8. Byra, M., Wu, M., Zhang, X., et al. 2020, Magn. Reson. Med., 83, 1109 [Google Scholar]
  9. Chambers, K. C., Magnier, E. A., Metcalfe, N., et al. 2016, ArXiv e-prints [arXiv:1612.05560] [Google Scholar]
  10. Chawla, N., Bowyer, K., Hall, L., & Kegelmeyer, W. 2002, J. Artif. Intell. Res. (JAIR), 16, 321 [Google Scholar]
  11. Chicco, D. 2017, BioData Mining, 10, 35 [Google Scholar]
  12. Chicco, D., & Jurman, G. 2020, BMC Genom., 21, 6 [Google Scholar]
  13. Cowan, J., Tesauro, G., & Alspector, J. 1994, Advances in Neural Information Processing Systems 6 (Morgan Kaufmann) [Google Scholar]
  14. Di, S., Zhang, H., Li, C., et al. 2018, IEEE Trans. Intell. Transp. Syst., 19, 745 [Google Scholar]
  15. D’Isanto, A., & Polsterer, K. L. 2018, A&A, 609, A111 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  16. Domínguez Sánchez, H., Huertas-Company, M., Bernardi, M., et al. 2019, MNRAS, 484, 93 [NASA ADS] [CrossRef] [Google Scholar]
  17. Dubath, P., Rimoldini, L., Süveges, M., et al. 2011, MNRAS, 414, 2602 [NASA ADS] [CrossRef] [Google Scholar]
  18. Duchi, J., Hazan, E., & Singer, Y. 2011, J. Mach. Learn. Res., 12, 2121 [Google Scholar]
  19. Duev, D. A., Mahabal, A., Ye, Q., et al. 2019, MNRAS, 486, 4158 [CrossRef] [Google Scholar]
  20. Ellaway, P. 1978, Electroencephalogr. Clin. Neurophysiol., 45, 302 [Google Scholar]
  21. Elorrieta, F., Eyheramendy, S., Jordán, A., et al. 2016, A&A, 595, A82 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  22. Fernandes, J. A., Irigoien, X., Goikoetxea, N., et al. 2010, Ecol. Model., 221, 338 [Google Scholar]
  23. Gaia Collaboration (Prusti, T., et al.) 2016, A&A, 595, A1 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  24. Goodfellow, I., Pouget-Abadie, J., Mirza, M., et al. 2014, in Advances in Neural Information Processing Systems 27, eds. Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, & K. Q. Weinberger (Curran Associates, Inc.), 2672 [Google Scholar]
  25. Gorodkin, J. 2004, Comput. Biol. Chem., 28, 367 [Google Scholar]
  26. Graczyk, D., Soszyński, I., Poleski, R., et al. 2011, Acta Astron., 61, 103 [Google Scholar]
  27. Graves, A., Mohamed, A. R., & Hinton, G. 2013, ArXiv e-prints [arXiv:1303.5778] [Google Scholar]
  28. Grison, P. 1994, A&A, 289, 404 [NASA ADS] [Google Scholar]
  29. He, H., Bai, Y., Garcia, E. A., & Li, S. 2008, IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 1322 [Google Scholar]
  30. Hinton, G., Deng, l., Yu, D., et al. 2012, Sign. Process. Mag. IEEE, 29, 82 [Google Scholar]
  31. Hinton, G., Vinyals, O., & Dean, J. 2015, ArXiv e-prints [arXiv:1503.02531] [Google Scholar]
  32. Hon, M., Stello, D., & Yu, J. 2017, MNRAS, 469, 4578 [NASA ADS] [CrossRef] [Google Scholar]
  33. Hosenie, Z., Lyon, R. J., Stappers, B. W., & Mootoovaloo, A. 2019, MNRAS, 488, 4858 [NASA ADS] [CrossRef] [Google Scholar]
  34. Hu, G., Zhang, Y., & Yang, Q. 2019, ArXiv e-prints [arXiv:1901.07199] [Google Scholar]
  35. Ioffe, S., & Szegedy, C. 2015, ArXiv e-prints [arXiv:1502.03167] [Google Scholar]
  36. Jayasinghe, T., Kochanek, C. S., Stanek, K. Z., et al. 2018, MNRAS, 477, 3145 [Google Scholar]
  37. Jayasinghe, T., Stanek, K. Z., Kochanek, C. S., et al. 2019, MNRAS, 485, 961 [NASA ADS] [CrossRef] [Google Scholar]
  38. Kains, N., Calamida, A., Rejkuba, M., et al. 2019, MNRAS, 482, 3058 [NASA ADS] [Google Scholar]
  39. Keller, S. C., Schmidt, B. P., Bessell, M. S., et al. 2007, PASA, 24, 1 [NASA ADS] [CrossRef] [Google Scholar]
  40. Kim, D.-W., & Bailer-Jones, C. A. L. 2016, A&A, 587, A18 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  41. Kim, E. J., & Brunner, R. J. 2017, MNRAS, 464, 4463 [NASA ADS] [CrossRef] [Google Scholar]
  42. Kim, D.-W., Protopapas, P., Byun, Y.-I., et al. 2011, ApJ, 735, 68 [NASA ADS] [CrossRef] [Google Scholar]
  43. Kim, D.-W., Protopapas, P., Trichas, M., et al. 2012, ApJ, 747, 107 [NASA ADS] [CrossRef] [Google Scholar]
  44. Kim, D.-W., Protopapas, P., Bailer-Jones, C. A. L., et al. 2014, A&A, 566, A43 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  45. Kingma, D. P., & Ba, J. 2014, ArXiv e-prints [arXiv:1412.6980] [Google Scholar]
  46. Krizhevsky, A., Sutskever, I., & Hinton, G. E. 2012, Commun. ACM, 60, 84 [Google Scholar]
  47. Lanusse, F., Ma, Q., Li, N., et al. 2018, MNRAS, 473, 3895 [NASA ADS] [CrossRef] [Google Scholar]
  48. Lecun, Y., Bengio, Y., & Hinton, G. 2015, Nature, 521, 436 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  49. Li, R., Zhao, Z., Chen, X., Palicot, J., & Zhang, H. 2014, IEEE Trans. Wirel. Commun., 13, 2000 [Google Scholar]
  50. Lieu, M., Conversi, L., Altieri, B., & Carry, B. 2019, MNRAS, 485, 5831 [CrossRef] [Google Scholar]
  51. Lomb, N. R. 1976, Ap&SS, 39, 447 [Google Scholar]
  52. Long, J. P., El Karoui, N., Rice, J. A., Richards, J. W., & Bloom, J. S. 2012, PASP, 124, 280 [NASA ADS] [CrossRef] [Google Scholar]
  53. Lu, C., Hu, F., Cao, D., et al. 2019, IEEE Trans. Intell. Transp. Syst., 1 [Google Scholar]
  54. Lundberg, S. M., & Lee, S. I. 2017, in Advances in Neural Information Processing Systems 30, eds. I. Guyon, U. V. Luxburg, S. Bengio, et al. (Curran Associates, Inc.), 4765 [Google Scholar]
  55. Maqsood, M., Nazir, F., Khan, U., et al. 2019, Sensors (Basel), 19, 2645 [NASA ADS] [CrossRef] [Google Scholar]
  56. Matthews, B. 1975, Biochim. Biophys. Acta (BBA) – Protein Struct., 405, 442 [Google Scholar]
  57. Nair, V., & Hinton, G. E. 2010, Proceedings of the 27th International Conference on Machine Learning (ICML-10), 807 [Google Scholar]
  58. Pan, S. J., & Yang, Q. 2010, IEEE Trans. Knowl. Data Eng., 22, 1345 [Google Scholar]
  59. Pan, W., Xiang, E. W., & Yang, Q. 2012, Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, AAAI’12 (AAAI Press), 662 [Google Scholar]
  60. Pearson, K. A., Palafox, L., & Griffith, C. A. 2018, MNRAS, 474, 478 [NASA ADS] [CrossRef] [Google Scholar]
  61. Petegrosso, R., Park, S., Hwang, T. H., & Kuang, R. 2016, Bioinformatics, 33, 529 [Google Scholar]
  62. Pham, C., Pham, V., & Dang, T. 2019, 2019 IEEE International Conference on Big Data (Big Data), 5844 [CrossRef] [Google Scholar]
  63. Pojmanski, G. 1997, Acta Astron., 47, 467 [Google Scholar]
  64. Poleski, R., Soszyñski, I., Udalski, A., et al. 2010, Acta Astron., 60, 1 [NASA ADS] [Google Scholar]
  65. Powers, D. M. W. 2011, J. Mach. Learn. Technol., 2, 37 [NASA ADS] [Google Scholar]
  66. Scillitoe, A., Seshadri, P., & Girolami, M. 2021, J. Comput. Phys., 430, 110116 [NASA ADS] [CrossRef] [Google Scholar]
  67. Shapiro, S. S., & Wilk, M. B. 1965, Biometrika, 52, 591 [Google Scholar]
  68. Shapley, L. S. 1953, Contributions to the Theory of Games (AM-28) (Princeton: Princeton University Press), 2 [Google Scholar]
  69. Shappee, B. J., Prieto, J. L., Grupe, D., et al. 2014, ApJ, 788, 48 [NASA ADS] [CrossRef] [Google Scholar]
  70. Shin, H. C., Roth, H. R., Gao, M., et al. 2016, ArXiv e-prints [arXiv:1602.03409] [Google Scholar]
  71. Silver, D., Huang, A., Maddison, C. J., et al. 2016, Nature, 529, 484 [CrossRef] [PubMed] [Google Scholar]
  72. Smith, L. N. 2015, ArXiv e-prints [arXiv:1506.01186] [Google Scholar]
  73. Soszynski, I., Poleski, R., Udalski, A., et al. 2008, Acta Astron., 58, 163 [NASA ADS] [Google Scholar]
  74. Soszyñski, I., Udalski, A., Szymañski, M. K., et al. 2009, Acta Astron., 59, 239 [Google Scholar]
  75. Soszyński, I., Udalski, A., Szymański, M. K., et al. 2008, Acta Astron., 58, 293 [NASA ADS] [Google Scholar]
  76. Soszyński, I., Udalski, A., Szymański, M. K., et al. 2009, Acta Astron., 59, 1 [NASA ADS] [Google Scholar]
  77. Stetson, P. B. 1996, PASP, 108, 851 [NASA ADS] [CrossRef] [Google Scholar]
  78. Szegedy, C., Liu, W., Jia, Y., et al. 2015, Computer Vision and Pattern Recognition (CVPR) (IEEE) [Google Scholar]
  79. Tang, H., Scaife, A. M. M., & Leahy, J. P. 2019, MNRAS, 488, 3358 [Google Scholar]
  80. Tisserand, P., Le Guillou, L., Afonso, C., et al. 2007, A&A, 469, 387 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  81. Udalski, A., Kubiak, M., & Szymanski, M. 1997, Acta Astron., 47, 319 [NASA ADS] [Google Scholar]
  82. Vafaei Sadr, A., Vos, E. E., Bassett, B. A., et al. 2019, MNRAS, 484, 2793 [NASA ADS] [CrossRef] [Google Scholar]
  83. Valverde-Albacete, F. J., & Peláez-Moreno, C. 2014, PLoS ONE, 9, e84217 [NASA ADS] [CrossRef] [Google Scholar]
  84. von Neumann, J. 1941, Ann. Math. Stat., 12, 367 [Google Scholar]
  85. Wang, J., Zheng, H., Huang, Y., & Ding, X. 2018, IEEE Trans. Intell. Transp. Syst., 19, 2913 [CrossRef] [Google Scholar]
  86. Xu, Q., Xiang, E. W., & Yang, Q. 2010, IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 62 [CrossRef] [Google Scholar]
  87. Yeo, D., Bae, J., Kim, N., et al. 2018, 2018 25th IEEE International Conference on Image Processing (ICIP), 674 [CrossRef] [Google Scholar]
  88. Yim, J., Joo, D., Bae, J., & Kim, J. 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 7130 [CrossRef] [Google Scholar]
  89. Zeiler, M. D. 2012, ArXiv e-prints [arXiv:1212.5701] [Google Scholar]
  90. Zhao, Q., & Grace, D. 2014, 1st International Conference on 5G for Ubiquitous Connectivity, 152 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.