Open Access
Issue
A&A
Volume 646, February 2021
Article Number A123
Number of page(s) 17
Section Numerical methods and codes
DOI https://doi.org/10.1051/0004-6361/202038579
Published online 22 February 2021
  1. Anderson, J. D. 1995, Computational Fluid Dynamics : The Basics with Applications, McGraw-Hill Series in Mechanical Engineering (New York: McGraw-Hill) [Google Scholar]
  2. Audit, E., Charrier, P., Chièze, J. P., & Dubroca, B. 2002, ArXiv e-prints [arXiv:astro-ph/0206281] [Google Scholar]
  3. Baker, C., & Heroux, M. 2012, Sci. Program., 20, 115 [Google Scholar]
  4. Bavier, E., Hoemmen, M., Rajamanickam, S., & Thornquist, H. 2012, Sci. Program., 20, 241 [Google Scholar]
  5. Berger-Vergiat, L., Glusa, C. A., Hu, J. J., et al. 2019a, MueLu Multigrid Framework, http://trilinos.org/packages/muelu [Google Scholar]
  6. Berger-Vergiat, L., Glusa, C. A., Hu, J. J., et al. 2019b, MueLu User’s Guide, Tech. Rep. SAND2019-0537 (Sandia National Laboratories) [Google Scholar]
  7. Berthon, C., & Turpault, R. 2011, Numer. Methods Partial Differ. Equations, 27, 1396 [CrossRef] [Google Scholar]
  8. Berthon, C., Charrier, P., & Dubroca, B. 2007, J. Sci. Comput., 31, 347 [CrossRef] [Google Scholar]
  9. Berthon, C., Crestetto, A., & Foucher, F. 2015, J. Sci. Comput., 67, 618 [CrossRef] [Google Scholar]
  10. Bisbas, T. G., Haworth, T. J., Williams, R. J. R., et al. 2015, MNRAS, 453, 1324 [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  11. Black, J. H. 1981, MNRAS, 197, 553 [NASA ADS] [Google Scholar]
  12. Buet, C., & Despres, B. 2008, A gas dynamics scheme for a two moments model of radiative transfer [Google Scholar]
  13. Cai, X.-C., & Sarkis, M. 1999, SIAM J. Sci. Comput., 21, 792 [CrossRef] [Google Scholar]
  14. Chalons, C., Girardin, M., & Kokh, S. 2016, Commun. Comput. Phys., 20, 188 [Google Scholar]
  15. Chandrasekhar, S. 1960, Radiative Transfer Dover Books on Intermediate and Advanced Mathematics (Dover Publications) [Google Scholar]
  16. Churchwell, E. 2002, ARA&A, 20, 27 [NASA ADS] [CrossRef] [Google Scholar]
  17. Dubroca, B., & Feugeas, J. L. 1999, C. R. Acad. Sci. - Ser. I - Math., 329, 915 [NASA ADS] [Google Scholar]
  18. Edwards, H. C., Trott, C. R., & Sunderland, D. 2014, J. Parallel Distrib. Comput., 74, 3202 [CrossRef] [PubMed] [Google Scholar]
  19. Ensman, L. 1994, ApJ, 424, 275 [NASA ADS] [CrossRef] [Google Scholar]
  20. Gnedin, N. Y., & Abel, T. 2001, New Astron., 6, 437 [NASA ADS] [CrossRef] [Google Scholar]
  21. González, M. 2006, Theses, Université Paris Sud - Paris XI [Google Scholar]
  22. González, M., Audit, E., & Huynh, P. 2007, A&A, 464, 429 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  23. Hayes, J. C., & Norman, M. L. 2003, ApJS, 147, 197 [NASA ADS] [CrossRef] [Google Scholar]
  24. Heroux, M. A., Bartlett, R. A., Howle, V. E., et al. 2005, ACM Trans. Math. Softw., 31, 397 [CrossRef] [Google Scholar]
  25. Herpin, F., Marseille, M., Wakelam, V., Bontemps, S., & Lis, D. C. 2009, A&A, 504, 853 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  26. Kestener, P. 2017, Implementing High-Resolution Fluid Dynamics Solver in a Performance Portable Way with Kokkos, Tech. rep. (GPU Technology Conf. GTC) [Google Scholar]
  27. Krumholz, M. R., Klein, R. I., McKee, C. F., & Bolstad, J. 2007, ApJ, 667, 626 [NASA ADS] [CrossRef] [Google Scholar]
  28. Kuiper, R., Klahr, H., Beuther, H., & Henning, T. 2010, ApJ, 722, 1556 [CrossRef] [Google Scholar]
  29. Lesaffre, P. 2002, Theses, Université Paris-Diderot - Paris VII, France [Google Scholar]
  30. Levermore, C. D. 1984, J. Quant. Spectr. Rad. Transf., 31, 149 [NASA ADS] [CrossRef] [Google Scholar]
  31. Levermore, C. D., & Pomraning, G. C. 1981, ApJ, 248, 321 [Google Scholar]
  32. Lowrie, R. B., Morel, J. E., & Hittinger, J. A. 1999, ApJ, 521, 432 [CrossRef] [Google Scholar]
  33. Mignon-Risse, R., González, M., Commerçon, B., & Rosdahl, J. 2020, A&A, 635, A42 [CrossRef] [EDP Sciences] [Google Scholar]
  34. Mihalas, D., & Mihalas, B. W. 1984, Foundations of Radiation Hydrodynamics (New York: Oxford University Press) [Google Scholar]
  35. Mizuta, A., Kane, J., Pound, M., et al. 2008, ApJ, 621, 803 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  36. Padioleau, T., Tremblin, P., Audit, E., Kestener, P., & Kokh, S. 2019, ApJ, 875, 128 [CrossRef] [Google Scholar]
  37. Pichard, T., Alldredge, G., Brull, S., Dubroca, B., & Frank, M. 2016, J. Comput. Theor. Transp., 1 [Google Scholar]
  38. Prokopenko, A., Siefert, C. M., Hu, J. J., Hoemmen, M., & Klinvex, A. 2016, Ifpack2 User’s Guide 1.0, Tech. Rep. SAND2016-5338 (Sandia National Labs) [Google Scholar]
  39. Richling, S., Meinköhn, E., Kryzhevoi, N., & Kanschat, G. 2001, A&A, 380, 776 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  40. Saad, Y. 1994, Numer. Linear Algebra Appl., 1, 387 [CrossRef] [Google Scholar]
  41. Saad, Y. 2003, Iterative Methods for Sparse Linear Systems, 2nd edn. (Philadelphia, PA, USA: Society for Industrial and Applied Mathematics) [Google Scholar]
  42. Spitzer, L. 1978, Physical Processes in the Interstellar Medium (New York: Wiley) [Google Scholar]
  43. Stiavelli, M. 2009, From First Light to Reionization: The End of the Dark Ages [CrossRef] [Google Scholar]
  44. Thomas, G. E., & Stamnes, K. 2002, Radiative Transfer in the Atmosphere and Ocean (UK: Cambridge University Press) [Google Scholar]
  45. Toro, E. 2009, Riemann Solvers and Numerical Methods for Fluid Dynamics, 163 [CrossRef] [Google Scholar]
  46. Tremblin, P. 2012, PhD Thesis, Univ. Paris Diderot - Paris 7, France [Google Scholar]
  47. Tremblin, P., Audit, E., Minier, V., Schmidt, W., & Schneider, N. 2012, A&A, 546, A33 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  48. Turpault, R. 2005, J. Quant. Spectrosc. Radiat. Transfer, 94, 357 [CrossRef] [Google Scholar]
  49. Van der Vorst, H. 1992, SIAM J. Sci. Stat. Comput., 13, 631 [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.