Open Access
Issue
A&A
Volume 641, September 2020
Article Number A67
Number of page(s) 11
Section Numerical methods and codes
DOI https://doi.org/10.1051/0004-6361/201937039
Published online 11 September 2020
  1. Adler, J., & Öktem, O. 2017, Inverse Prob., 33, 124007 [CrossRef] [Google Scholar]
  2. Adler, J., & Öktem, O. 2018, IEEE Trans. Med. Imaging, 37, 1322 [CrossRef] [Google Scholar]
  3. Afonso, M., Bioucas-Dias, J., & Figueiredo, M. 2011, IEEE Trans. Image Process., 20, 681 [CrossRef] [Google Scholar]
  4. Andrews, H. C., & Hunt, B. R. 1977, Digital Image Restoration (Englewood Cliffs, NJ: Prentice-Hall) [Google Scholar]
  5. Beck, A., & Teboulle, M. 2009, SIAM J. Imaging Sci., 2, 183 [Google Scholar]
  6. Bertero, M., & Boccacci, P. 1998, Introduction to Inverse Problems in Imaging (Institute of Physics) [CrossRef] [Google Scholar]
  7. Bertin, E. 2011, in Astronomical Data Analysis Software and Systems XX, eds. I. N. Evans, A. Accomazzi, D. J. Mink, & A. H. Rots, ASP Conf. Ser., 442, 435 [Google Scholar]
  8. Bertocchi, C., Chouzenoux, E., Corbineau, M. C., Pesquet, J. C., & Prato, M. 2018, ArXiv e-prints [arXiv:1812.04276] [Google Scholar]
  9. Bigdeli, S. A., Jin, M., Favaro, P., & Zwicker, M. 2017, Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17 (USA: Curran Associates Inc.), 763 [Google Scholar]
  10. Bioucas-Dias, J. 2006, IEEE Trans. Image Process., 15, 937 [CrossRef] [Google Scholar]
  11. Bobin, J., Sureau, F., Starck, J.-L., Rassat, A., & Paykari, P. 2014, A&A, 563, A105 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  12. Boyd, S., Parikh, N., Chu, E., Peleato, B., & Eckstein, J. 2010, Mach. Learn., 3, 1 [Google Scholar]
  13. Cai, J., Osher, S., & Shen, Z. 2010, Multiscale Model. Simul., 8, 337 [Google Scholar]
  14. Chambolle, A., & Pock, T. 2011, J. Math. Imaging Vision, 40, 120 [CrossRef] [Google Scholar]
  15. Chan, S. H., Wang, X., & Elgendy, O. 2017, IEEE Trans. Comput. Imaging, 3, 84 [CrossRef] [Google Scholar]
  16. Chollet, F. 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1800 [Google Scholar]
  17. Combettes, P. L., & Pesquet, J. C. 2011, in Fixed-Point Algorithms for Inverse Problems in Science and Engineering, eds. H. Bauschke, R. Burachik, & P. Combettes (Springer), 185 [CrossRef] [MathSciNet] [Google Scholar]
  18. Combettes, P. L., & Vu, B. C. 2014, Optimization, 63, 1289 [CrossRef] [Google Scholar]
  19. Condat, L. 2013, J. Optim. Theory App., 158, 460 [CrossRef] [MathSciNet] [Google Scholar]
  20. Deledalle, C., Vaiter, S., Fadili, J., & Peyré, G. 2014, SIAM J. Imaging Sci., 7, 2448 [CrossRef] [Google Scholar]
  21. Donoho, D. L. 1995, Appl. Comput. Harmonic Anal., 2, 101 [CrossRef] [MathSciNet] [Google Scholar]
  22. Eldan, R., & Shamir, O. 2015, Conference on Learning Theory [Google Scholar]
  23. Eldar, Y. 2009, IEEE Trans. Signal Proc., 57, 471 [CrossRef] [Google Scholar]
  24. Elfwing, S., Uchibe, E., & Doya, K. 2018. Neural Networks, 107, 3, Special issue on deep reinforcement learning [CrossRef] [Google Scholar]
  25. Engl, H. W., Hanke, M., & Neubauer, A. 1996, Regularization of Inverse Problems (Dordrecht: Kluwer) [CrossRef] [Google Scholar]
  26. Fan, F., Li, M., Teng, Y., & Wang, G. 2018, ArXiv e-prints [arXiv:1812.11675] [Google Scholar]
  27. Farrens, S., Starck, J.-L., & Mboula, F. 2017, A&A, 601 [Google Scholar]
  28. Garsden, H., Girard, J. N., Starck, J. L., et al. 2015, A&A, 575, A90 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  29. Golub, G. H., Heath, M., & Wahba, G. 1979, Technometrics, 21, 215 [CrossRef] [Google Scholar]
  30. Gregor, K., & LeCun, Y. 2010, Proceedings of the 27th International Conference on International Conference on Machine Learning, ICML’10 (USA: Omnipress), 399 [Google Scholar]
  31. Guerrero-Colon, J. A., & Portilla, J. 2006, in 2006 International Conference on Image Processing, 625 [CrossRef] [Google Scholar]
  32. Gupta, H., Jin, K. H., Nguyen, H. Q., McCann, M. T., & Unser, M. 2018, IEEE Trans. Med. Imaging, 37, 1440 [CrossRef] [Google Scholar]
  33. Han, Y., & Ye, J. C. 2018, IEEE Trans. Med. Imaging, 37, 1418 [CrossRef] [Google Scholar]
  34. Hansen, P. C., & O’Leary, D. 1993, SIAM J. Sci. Comput., 14, 1487 [CrossRef] [MathSciNet] [Google Scholar]
  35. He, K., Zhang, X., Ren, S., & Sun, J. 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770 [Google Scholar]
  36. Huang, G., Liu, Z., van der Maaten, L., & Weinberger, K. Q. 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2261 [CrossRef] [Google Scholar]
  37. Hunt, B. R. 1972, IEEE Transactions on Automatic and Control, AC-17, 703 [CrossRef] [Google Scholar]
  38. Ioffe, S., & Szegedy, C. 2015, Proceedings of the 32Nd International Conference on International Conference on Machine Learning - Volume 37, ICML’15 (JMLR.org), 37, 448 [Google Scholar]
  39. Jia, C., & Evans, B. L. 2011, in 2011 18th IEEE International Conference on Image Processing, 681 [Google Scholar]
  40. Jin, K. H., McCann, M. T., Froustey, E., & Unser, M. 2017, IEEE Trans. Image Process., 26, 4509 [CrossRef] [Google Scholar]
  41. Kaiser, N., Squires, G., & Broadhurst, T. 1995, ApJ, 449, 460 [NASA ADS] [CrossRef] [Google Scholar]
  42. Kalifa, J., Mallat, S., & Rouge, B. 2003, IEEE Trans. Image Process., 12, 446 [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  43. Kingma, D., & Ba, J. 2014, International Conference on Learning Representations [Google Scholar]
  44. Krishnan, D., & Fergus, R. 2009, in Advances in Neural Information Processing Systems, eds. Y. Bengio, D. Schuurmans, J. D. Lafferty, C. K. I. Williams, & A. Culotta (Curran Associates, Inc.), 22, 1033 [Google Scholar]
  45. Krist, J. E., Hook, R. N., & Stoehr, F. 2011, in Optical Modeling and Performance Predictions V, Proc. SPIE, 8127, 81270J [Google Scholar]
  46. Kuijken, K., Heymans, C., Hildebrandt, H., et al. 2015, MNRAS, 454, 3500 [NASA ADS] [CrossRef] [Google Scholar]
  47. Lanusse, F., Starck, J.-L., Leonard, A., & Pires, S. 2016, A&A, 591, A2 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  48. LeCun, Y., Bengio, Y., & Hinton, G. 2015, Nature, 521, 436 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  49. Li, Y., Tofighi, M., Monga, V., & Eldar, Y. C. 2019, ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 7675 [Google Scholar]
  50. Lou, Y., Bertozzi, A. L., & Soatto, S. 2011, J. Math. Imaging Vision, 39, 1 [CrossRef] [Google Scholar]
  51. Mairal, J., Sapiro, G., & Elad, M. 2008, Multiscale Model. Simul., 7, 214 [Google Scholar]
  52. Mallat, S. 2016, Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci., 374, 20150203 [NASA ADS] [CrossRef] [Google Scholar]
  53. Mandelbaum, R., Rowe, B., Bosch, J., et al. 2014, ApJS, 212, 5 [NASA ADS] [CrossRef] [Google Scholar]
  54. Mandelbaum, R., Rowe, B., Armstrong, R., et al. 2015, MNRAS, 450, 2963 [NASA ADS] [CrossRef] [Google Scholar]
  55. Mardani, M., Gong, E., Cheng, J. Y., Pauly, J. M., & Xing, L. 2017, 2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, CAMSAP 2017, Curaçao, The Netherlands, December 10–13, 2017, 1 [Google Scholar]
  56. Mardani, M., Sun, Q., Vasawanala, S., et al. 2018, Proceedings of the 32Nd International Conference on Neural Information Processing Systems, NIPS’18 (USA: Curran Associates Inc.), 9596 [Google Scholar]
  57. Mboula, F., Starck, J.-L., Okumura, K., Amiaux, J., & Hudelot, P. 2016, Inverse Prob., 32 [Google Scholar]
  58. Meinhardt, T., Moller, M., Hazirbas, C., & Cremers, D. 2017, Proceedings of the IEEE International Conference on Computer Vision, 1781 [Google Scholar]
  59. Monga, V., Li, Y., & Eldar, Y. C. 2019, Algorithm Unrolling: Interpretable, Efficient Deep Learning for Signal and Image Processing [Google Scholar]
  60. Neelamani, R., Choi, Hyeokho, & Baraniuk, R. 2004, IEEE Trans. Signal Process., 52, 418 [Google Scholar]
  61. Oliveira, J. P., Bioucas-Dias, J. M., & Figueiredo, M. A. 2009, Signal Process., 89, 1683 [CrossRef] [Google Scholar]
  62. Orieux, F., Giovannelli, J., & Rodet, T. 2010, in 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, 1350 [CrossRef] [Google Scholar]
  63. Pereyra, M., Bioucas-Dias, J. M., & Figueiredo, M. A. T. 2015, in 2015 23rd European Signal Processing Conference (EUSIPCO), 230 [CrossRef] [Google Scholar]
  64. Pesquet, J., Benazza-Benyahia, A., & Chaux, C. 2009, IEEE Trans. Signal Process., 57, 4616 [CrossRef] [Google Scholar]
  65. Petersen, P., & Voigtlaender, F. 2018, Neural Networks, 108, 296 [Google Scholar]
  66. Pustelnik, N., Benazza-Benhayia, A., Zheng, Y., & Pesquet, J.-C. 2016, Wiley Encyclopedia of Electrical and Electronics Engineering [Google Scholar]
  67. Reehorst, E. T., & Schniter, P. 2018, IEEE Trans. Comput. Imaging, 1 [Google Scholar]
  68. Ribli, D., Pataki, B. Á., & Csabai, I. 2019, Nat. Astron., 3, 93 [CrossRef] [Google Scholar]
  69. Romano, Y., Elad, M., & Milanfar, P. 2017, SIAM J. Imaging Sci., 10, 1804 [CrossRef] [Google Scholar]
  70. Ronneberger, O., Fischer, P., & Brox, T. 2015, in Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015, eds. N. Navab, J. Hornegger, W. M. Wells, & A. F. Frangi (Cham: Springer International Publishing), 234 [CrossRef] [Google Scholar]
  71. Rowe, B., Jarvis, M., Mandelbaum, R., et al. 2015, Astron. Comput., 10, 121 [NASA ADS] [CrossRef] [Google Scholar]
  72. Safran, I., & Shamir, O. 2017, in Proceedings of the 34th International Conference on Machine Learning - Volume 70, ICML’17 (JMLR.org), 70, 2979 [Google Scholar]
  73. Schmitz, M. A., Starck, J. L., Ngole Mboula, F., et al. 2020, A&A, 636, A78 [CrossRef] [EDP Sciences] [Google Scholar]
  74. Schuler, C. J., Burger, H. C., Harmeling, S., & Schölkopf, B. 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition, 1067 [CrossRef] [Google Scholar]
  75. Schuler, C. J., Hirsch, M., Harmeling, S., & Schölkopf, B. 2016, IEEE Trans. Pattern Anal. Mach. Intell., 38, 1439 [CrossRef] [Google Scholar]
  76. Sreehari, S., Venkatakrishnan, S., Wohlberg, B., et al. 2016, IEEE Trans. Comput. Imaging, 2, 408 [Google Scholar]
  77. Starck, J.-L., Bijaoui, A., Valtchanov, I., & Murtagh, F. 2000, A&AS, 147, 139 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  78. Starck, J.-L., Nguyen, M., & Murtagh, F. 2003, Signal Process., 83, 2279 [CrossRef] [Google Scholar]
  79. Starck, J.-L., Murtagh, F., & Bertero, M. 2015a, Starlet Transform in Astronomical Data Processing (New York, NY: Springer), 2053 [Google Scholar]
  80. Starck, J.-L., Murtagh, F., & Fadili, J. 2015b, Sparse Image and Signal Processing: Wavelets and Related Geometric Multiscale Analysis (Cambridge University Press) [Google Scholar]
  81. Sureau, F. C., Starck, J.-L., Bobin, J., Paykari, P., & Rassat, A. 2014, A&A, 566, A100 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  82. Szegedy, C., Ioffe, S., & Vanhoucke, V. 2016, AAAI Conference on Artificial Intelligence [Google Scholar]
  83. Tikhonov, A. N., & Arsenin, V. Y. 1977, Solutions of Ill-posed problems, ed. W. H. Winston [Google Scholar]
  84. Twomey, S. 1963, J. ACM, 10, 97 [CrossRef] [Google Scholar]
  85. Venkatakrishnan, S. V., Bouman, C. A., & Wohlberg, B. 2013, 2013 IEEE Global Conference on Signal and Information Processing, 945 [CrossRef] [Google Scholar]
  86. Viola, M., Melchior, P., & Bartelmann, M. 2011, MNRAS, 410, 2156 [NASA ADS] [CrossRef] [Google Scholar]
  87. Xu, L., Ren, J., Liu, C., & Jia, J. 2014, Adv. Neural Inf. Process. Syst., 2, 1790 [Google Scholar]
  88. Ye, J. C., Han, Y., & Cha, E. 2018a, SIAM J. Imaging Sci., 11, 991 [CrossRef] [Google Scholar]
  89. Zhang, K., Zuo, W., Gu, S., & Zhang, L. 2017, in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2808 [CrossRef] [Google Scholar]
  90. Zibulevsky, M., & Elad, M. 2010, IEEE Signal Process. Mag., 27, 76 [CrossRef] [Google Scholar]
  91. Zuntz, J., Sheldon, E., Samuroff, S., et al. 2018, MNRAS, 481, 1149 [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.