Free Access
Issue
A&A
Volume 640, August 2020
Article Number A41
Number of page(s) 9
Section Numerical methods and codes
DOI https://doi.org/10.1051/0004-6361/201937059
Published online 07 August 2020
  1. Beck, A., & Teboulle, M. 2009, IEEE Trans. Image Proc., 18, 2419 [NASA ADS] [CrossRef] [Google Scholar]
  2. Claret, A., & Bloemen, S. 2011, A&A, 529, A75 [Google Scholar]
  3. Hand, D. J., Smyth, P., & Mannila, H. 2001, Principles of Data Mining (MIT Press) [Google Scholar]
  4. He, K., Zhang, X., Ren, S., & Sun, J. 2016, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770 [Google Scholar]
  5. Heller, R. 2014, ApJ, 787, 14 [NASA ADS] [CrossRef] [Google Scholar]
  6. Hippke, M. 2015, ApJ, 806, 51 [NASA ADS] [CrossRef] [Google Scholar]
  7. Houhou, N., Bresson, X., Szlam, A., Chan, T. F., & Thiran, J.-P. 2009, in Scale Space and Variational Methods in Computer Vision, eds. X.-C. Tai, K. Mørken, M. Lysaker, & K.-A. Lie, 112 [Google Scholar]
  8. Huang, G., Liu, Z., van der Maaten, L., & Weinberger, K. Q. 2017, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 4700 [Google Scholar]
  9. Ioffe, S., & Szegedy, C. 2015, Proceedings of the 32nd International Conference on Machine Learning (Lille, France: PMLR), eds. F. Bach, & D. Blei, Proc. Mach. Learn. Res., 37, 448 [Google Scholar]
  10. Janocha, K., & Czarnecki, W. M. 2017, Theor. Found Mach. Learn., 25, 49 [Google Scholar]
  11. Javanmardi, M., Sajjadi, M., Liu, T., & Tasdizen, T. 2016, IEEE Conf. Comput. Vision Pattern Recogn. [Google Scholar]
  12. Kingma, D. P., & Ba, J. 2015, in 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7–9, 2015, Conference Track Proceedings, eds. Y. Bengio, & Y. LeCun [Google Scholar]
  13. Kipping, D. M. 2009, MNRAS, 392, 181 [NASA ADS] [CrossRef] [Google Scholar]
  14. Krizhevsky, A., Sutskever, I., & Hinton, G. E. 2012, Adv. Neural Inf. Proc. Syst., 25, 1097 [Google Scholar]
  15. Liu, S., & Deng, W. 2015, 3rd IAPR Asian Conference on Pattern Recognition, 730 [Google Scholar]
  16. Maas, A. L., Hannun, A. Y., & Ng, A. Y. 2013, ICML 2013 Workshop onDeep Learning for Audio, Speech and Language Processing, Atlanta, GA,USA, June 16, 2013 [Google Scholar]
  17. Mahendran, A., & Vedaldi, A. 2015, Int. J. Comput. Vision, 120, 233 [CrossRef] [Google Scholar]
  18. Pedamonti, D. 2018, IEEE Conf. Comput. Vision Pattern Recognit. [Google Scholar]
  19. Rodenbeck, K., Heller, R., Hippke, M., & Gizon, L. 2018, A&A, 617, A49 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  20. Schwarz, G. 1978, Ann. Stat., 6, 461 [Google Scholar]
  21. Simonoff, J. S. 1998, Smoothing Methods in Statistics (Springer) [Google Scholar]
  22. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. 2014, J. Mach. Learn. Res., 15, 1929 [Google Scholar]
  23. Szabó, R., Szabó, G. M., Dálya, G., et al. 2013, A&A, 553, A17 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  24. Teachey, A., & Kipping, D. M. 2018, Sci. Adv., 4 [Google Scholar]
  25. Teachey, A., Kipping, D. M., & Schmitt, A. R. 2018, AJ, 155, 36 [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.