Free Access
Issue
A&A
Volume 635, March 2020
Article Number A184
Number of page(s) 18
Section Planets and planetary systems
DOI https://doi.org/10.1051/0004-6361/202037498
Published online 01 April 2020
  1. Akhmadov, U., Zaslonko, I., & Smirnov, V. 1988, Kinet. Catal., 29, 291 [Google Scholar]
  2. Alexander, C. M. O. 2001, Meteorit. Planet. Sci., 36, 255 [NASA ADS] [CrossRef] [Google Scholar]
  3. Baldwin, B., & Sheaffer, Y. 1971, J. Geophys. Res., 76, 4653 [NASA ADS] [CrossRef] [Google Scholar]
  4. Bariselli, F., Frezzotti, A., Hubin, A., & Magin, T. E. 2019, MNRAS, 492, 2308 [Google Scholar]
  5. Bessell, M. S. 1990, PASP, 102, 1181 [NASA ADS] [CrossRef] [Google Scholar]
  6. Bessell, M. S., Castelli, F., & Plez, B. 1998, A&A, 333, 231 [NASA ADS] [Google Scholar]
  7. Borovička J. 1993, A&A, 279, 627 [NASA ADS] [Google Scholar]
  8. Borovička J. 1994, A&A, 103, 83 [NASA ADS] [Google Scholar]
  9. Borovička, J., & Betlem, H. 1997, Planet. Space Sci., 45, 563 [NASA ADS] [CrossRef] [Google Scholar]
  10. Borovička, J., & Berezhnoy, A. 2016, Icarus, 278, 248 [NASA ADS] [CrossRef] [Google Scholar]
  11. Borovička, J., Spurný, P., & Brown, P. 2015, Asteroids IV (Tucson: University of Arizona Press) [Google Scholar]
  12. Borovička, J., Stork, R., & Bocek, J. 1999, Meteorit. Planet. Sci., 34, 987 [NASA ADS] [CrossRef] [Google Scholar]
  13. Boyd, I. 2000, Earth Moon Planets, 82, 93 [NASA ADS] [Google Scholar]
  14. Bronshten, V. A. 1983, Physics of Meteoric Phenomena (Berlin: Springer) [CrossRef] [Google Scholar]
  15. Capek, D., Koten, P., Borovička, J., et al. 2019, A&A, 625, A106 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  16. Ceplecha, Z. 1987, Bull. Astron. Inst. Czechosl., 38, 222 [NASA ADS] [Google Scholar]
  17. Ceplecha, Z. 1996, A&A, 311, 329 [NASA ADS] [Google Scholar]
  18. Ceplecha, Z., & ReVelle, D. O. 2005, Meteorit. Planet. Sci., 40, 35 [NASA ADS] [CrossRef] [Google Scholar]
  19. Ceplecha, Z., Borovička, J., Elford, W. G., et al. 1998, Space Sci. Rev., 84, 327 [NASA ADS] [CrossRef] [Google Scholar]
  20. Ceplecha, Z., Borovička, J., & Spurný, P. 2000, A&A, 357, 1115 [NASA ADS] [Google Scholar]
  21. Cunto, W., Mendoza, C., Ochsenbein, F., & Zeippen, C. J. 1993, A&A, 275 [Google Scholar]
  22. Drouard, A., Vernazza, P., Loehle, S., et al. 2018, A&A, 613, A54 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  23. Fegley, B., & Cameron, A. 1987, Earth Planet. Sci. Lett., 82, 207 [NASA ADS] [CrossRef] [Google Scholar]
  24. Gnoffo, P., Gupta, R., & Shinn, J. 1989, Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium, Technical Paper 2867, NASA [Google Scholar]
  25. Golub, A. P., Kosarev, I. B., Nemchinov, I. V., & Shuvalov, V. V. 1996, Sol. Syst. Res., 30, 183 [NASA ADS] [Google Scholar]
  26. Gritsevich, M., & Koschny, D. 2011, Icarus, 212, 877 [NASA ADS] [CrossRef] [Google Scholar]
  27. Hartung, L. C., Mitcheltree, R. A., & Gnoffo, P. A. 1992, J. Thermophys. Heat Trans., 6, 412 [NASA ADS] [CrossRef] [Google Scholar]
  28. Hodgson, A., & Mackie, J. 1979, Combust. Flame, 35, 323 [CrossRef] [Google Scholar]
  29. Howie, R. M., Paxman, J., Bland, P. A., et al. 2017, Exp. Astron., 43, 237 [NASA ADS] [CrossRef] [Google Scholar]
  30. Jacchia, L. G., & Whipple, F. L. 1961, Smith. Contrib. Astrophys., 4, 97 [NASA ADS] [CrossRef] [Google Scholar]
  31. Jarosewich, E. 1990, Meteoritics, 25, 323 [NASA ADS] [CrossRef] [Google Scholar]
  32. Jenniskens, P. 2004, Adv. Space Res., 33, 1444 [NASA ADS] [CrossRef] [Google Scholar]
  33. Jenniskens, P., Wilson, M. A., Packan, D., et al. 1998, Earth Moon Planets, 82, 57 [NASA ADS] [CrossRef] [Google Scholar]
  34. Johnston, C., & Stern, E. 2017, in 47th AIAA Thermophysics Conference, (Denver, Colorado), 4533 [Google Scholar]
  35. Johnston, C. O., & Stern, E. C. 2019, Icarus, 327, 48 [NASA ADS] [CrossRef] [Google Scholar]
  36. Johnston, C. O., Stern, E. C., & Wheeler, L. F. 2018, Icarus, 309, 25 [NASA ADS] [CrossRef] [Google Scholar]
  37. Kashireninov, O., Kuznetsov, V., & Manelis, G. 1977, AIAA J., 15, 1035 [NASA ADS] [CrossRef] [Google Scholar]
  38. Kitamura, K., & Shima, E. 2013, J. Comput. Phys., 245, 62 [NASA ADS] [CrossRef] [Google Scholar]
  39. Klomfass, A., & Muller, S. 2000, A Quasi-One Dimensional Approach for Hypersonic Stagnation-Point Flows, Technical report, RWTH Aachen [Google Scholar]
  40. Kramida, A., & Ralchenko, Y. 1999, NIST Atomic Spectra Database, NIST Standard Reference Database 78 [Google Scholar]
  41. Lamet, J., Rivière, P., Perrin, M., & Soufiani, A. 2010, J. Quant. Spectr. Rad. Transf., 111, 87 [NASA ADS] [CrossRef] [Google Scholar]
  42. Lamy, H., Ranvier, S., Keyser, J., Gamby, E., & Calders, S. 2011, Meteoroids Conference Proceedings, NASA/CP–2011–216469, 351 [Google Scholar]
  43. Lasaga, A. C. & Cygan, R. T. 1982, Am. Mineral., 67, 328 [Google Scholar]
  44. Laux, C. 2002, in Physico-Chemical Modeling of High Enthalpy and Plasma Flows, eds. D. Fletcher, J. M. Charbonnier, G. S. R. Sarma, and T. Magin, (Rhode-Saint-Genèse, Belgium: von Karman Institute for Fluid Dynamics) [Google Scholar]
  45. Le Picard, S. D., Canosa, A., Reignier, D., & Stoecklin, T. 2002, Phys. Chem. Chem. Phys., 4, 3659 [CrossRef] [Google Scholar]
  46. Lide, D. R., 2004, CRC Handbook of Chemistry and Physics, 84th edn. (Boca Raton: CRC Press) [Google Scholar]
  47. Lopez, B., Perrin, M., Rivière, Ph., & Soufiani, A. 2013, J. Thermophys. Heat Trans., 27, 404 [CrossRef] [Google Scholar]
  48. Madiedo, J. M., Trigo-Rodríguez, J. M., Konovalova, N., et al. 2013a, A&A, 555, A149 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  49. Madiedo, J. M., Trigo-Rodríguez, J. M., Ortiz, J. L., et al. 2013b, MNRAS, 435, 2023 [NASA ADS] [CrossRef] [Google Scholar]
  50. Magin, T. E. 2004, Ph.D. thesis, Universitè Libre de Bruxelles, Bruxelles, Belgium [Google Scholar]
  51. Magin, T. E., Panesi, M., Bourdon, A., Jaffe, R. L., & Schwenke, D. W. 2012, Chem. Phys., 398, 90 [CrossRef] [Google Scholar]
  52. McBride, B. J., Gordon, S., & Reno, M. A. February 2001, Thermodynamic Data for Fifty Reference Elements, NASA TP-3287-REV1, Glenn Research Center, Cleveland, Ohio [Google Scholar]
  53. McCrosky, R. E., & Ceplecha, Z. 1970, Bull. Astron. Inst. Czechosl., 21, 271 [NASA ADS] [Google Scholar]
  54. McCrosky, R. E., Posen, A., Schwartz, G., & Shao, C.-Y. 1971, J. Geophys. Res. 76, 4090 [NASA ADS] [CrossRef] [Google Scholar]
  55. McGee, B. C., Hobbs, M. L., & Baer, M. R. 1998, Exponential 6 Parameterization for the JCZ3-EOS, SAND98-1191, Sandia National Laboratories [Google Scholar]
  56. Mick, H.-J., Burmeister, M., & Roth, P. 1993, AIAA J., 31, 671 [NASA ADS] [CrossRef] [Google Scholar]
  57. Millikan, R. C., & White, D. R. 1963, J. Chem. Phys., 39, 3209 [NASA ADS] [CrossRef] [Google Scholar]
  58. Modest, M. F. 2003, Radiative Heat Transfer, 2nd edn. (Cambridge: Academic Press) [Google Scholar]
  59. Munafò, A., & Magin, T. E. 2014, Phys. Fluids, 26, 097102 [NASA ADS] [CrossRef] [Google Scholar]
  60. Nicolet, M., & Peetermans, W. 1980, Planet. Space Sci., 28, 85 [NASA ADS] [CrossRef] [Google Scholar]
  61. Öpik, E. J. 1958, Physics of Meteor Flight in the Atmosphere (Geneva: Interscience Publishers) [Google Scholar]
  62. Park, C. 1988, J. Thermophys. Heat Transf., 2, 8 [NASA ADS] [CrossRef] [Google Scholar]
  63. Park, C. 1989, J. Thermophys. Heat Transf., 3, 233 [NASA ADS] [CrossRef] [Google Scholar]
  64. Park, C. 1993, J. Thermophys. Heat Transf., 7, 385 [NASA ADS] [CrossRef] [Google Scholar]
  65. Park, C. 2013, J. Quant. Spectr. Rad. Transf., 127, 158 [NASA ADS] [CrossRef] [Google Scholar]
  66. Park, C. 2014, J. Thermophys. Heat Transf., 28, 598 [NASA ADS] [CrossRef] [Google Scholar]
  67. Park, C. 2015, J. Quant. Spectr. Rad. Transf., 154, 44 [NASA ADS] [CrossRef] [Google Scholar]
  68. Park, C., Jaffe, R., & Partridge, H. 2001, J. Thermophys. Heat Transf., 15, 76 [CrossRef] [Google Scholar]
  69. Plane, J. M. C., & Husian, D. 1986, J. Chem. Soc. Faraday Trans., 82, 2047 [CrossRef] [Google Scholar]
  70. ReVelle, D. O., & Rajan, R. S. 1979, J. Geophys. Res., 84, 6255 [NASA ADS] [CrossRef] [Google Scholar]
  71. Scoggins, J. B., & Magin, T. E. 2015, Combust. Flame, 162, 4514 [CrossRef] [Google Scholar]
  72. Scoggins, J. B., Leroy, V., Bellas-Chatzigeorgis, G., Dias, B., & Magin, T. E. 2020, ArXiv e-prints [arXiv:2002.01783] [Google Scholar]
  73. Shuvalov, V., & Artemieva, N. 2002, Planet. Space Sci., 50, 181 [NASA ADS] [CrossRef] [Google Scholar]
  74. Silber, E. A., Hocking, W. K., Niculescu, M. L., Gritsevich, M., & Silber, R. E. 2017, MNRAS, 469, 1869 [NASA ADS] [CrossRef] [Google Scholar]
  75. Smith, G. P., Golden, D. M., Frenklach, M., et al. 1999, GRI-Mech 3.0. http://www.me.berkeley.edu/gri_mech/ [Google Scholar]
  76. Soucasse, L., Scoggins, J., Riviere, P., Magin, T., & Soufiani, A. 2016, J. Quant. Spectr. Rad. Transf., 180, 55 [NASA ADS] [CrossRef] [Google Scholar]
  77. Subasinghe, D., & Campbell-Brown, M. 2018, AJ, 155, 88 [NASA ADS] [CrossRef] [Google Scholar]
  78. Svehla, R. A. 1962, Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures, NASA TR R-132, Lewis Research Center, Cleveland, Ohio [Google Scholar]
  79. Svettsov, V. V., Shuvalov, V. V., & Popova, O. P. 2018, Sol. Syst. Res., 52, 195 [NASA ADS] [CrossRef] [Google Scholar]
  80. Verniani, F. 1965, Smith. Contrib. Astrophys., 8, 141 [NASA ADS] [CrossRef] [Google Scholar]
  81. Vojáček, V., Borovička, J., Koten, P., Spurný, P., & Štork, R. 2015, A&A, 580, A67 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  82. Vondrak, T., Plane, J. M., Broadley, S., & Janches, D. 2008, Atm. Chem. Phys., 8, 7015 [NASA ADS] [CrossRef] [Google Scholar]
  83. Weryk, R., Campbell-Brown, M., Wiegert, P., et al. 2013, Icarus, 225, 614 [NASA ADS] [CrossRef] [Google Scholar]
  84. Wright, M. J., Hwang, H. H., & Schwenke, D. W. 2007, AIAA J., 45, 281 [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.