Free Access
Issue
A&A
Volume 629, September 2019
Article Number A89
Number of page(s) 10
Section Numerical methods and codes
DOI https://doi.org/10.1051/0004-6361/201935945
Published online 10 September 2019
  1. Albanese, D., Filosi, M., Visintainer, R., et al. 2012, Bioinformatics, 29, 407 [CrossRef] [Google Scholar]
  2. Blackman, E. G. 2015, Space Sci. Rev., 188, 59 [NASA ADS] [CrossRef] [Google Scholar]
  3. Blackman, E. G., & Brandenburg, A. 2002, ApJ, 579, 359 [NASA ADS] [CrossRef] [Google Scholar]
  4. Blackman, E. G., & Field, G. B. 2002, Phys. Rep., 89, 265007 [Google Scholar]
  5. Bollen, K. A., & Pearl, J. 2013, in Eight Myths About Causality and Structural Equation Models, ed. S. L. Morgan (Dordrecht, Netherlands: Springer), 301 [Google Scholar]
  6. Brandenburg, A. 2001, ApJ, 550, 824 [NASA ADS] [CrossRef] [Google Scholar]
  7. Brandenburg, A. 2018, J. Plasma Phys., 84, 735840404 [CrossRef] [Google Scholar]
  8. Brandenburg, A., & Dobler, W. 2002, Comput. Phys. Commun., 147, 471 [Google Scholar]
  9. Brandenburg, A., & Sokoloff, D. 2002, Geophys. Astrophys. Fluid Dyn., 96, 319 [NASA ADS] [CrossRef] [Google Scholar]
  10. Brandenburg, A., & Subramanian, K. 2005, Phys. Rep., 417, 1 [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  11. Brandenburg, A., Sokoloff, D., & Subramanian, K. 2012, Space Sci. Rev., 169, 123 [NASA ADS] [CrossRef] [Google Scholar]
  12. Breiman, L. 2001a, Mach. Learn., 45, 5 [CrossRef] [Google Scholar]
  13. Breiman, L. 2001b, Statist. Sci., 16, 199 [CrossRef] [Google Scholar]
  14. Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. 1984, Classification and Regression Trees (Chapman and Hall/CRC) [Google Scholar]
  15. Brun, A. S., & Browning, M. K. 2017, Liv. Rev. Sol. Phys., 14, 4 [NASA ADS] [CrossRef] [Google Scholar]
  16. Brunton, S. L., & Kutz, J. N. 2019, Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control (Cambridge University Press) [CrossRef] [Google Scholar]
  17. Charbonneau, P. 2014, ARA&A, 52, 251 [NASA ADS] [CrossRef] [Google Scholar]
  18. Ercolano, B., & Pascucci, I. 2017, R. Soc. Open Sci., 4, 170114 [NASA ADS] [CrossRef] [Google Scholar]
  19. Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP, 125, 306 [NASA ADS] [CrossRef] [Google Scholar]
  20. Géron, A. 2017, Hands-On Machine Learning with Scikit-Learn and TensorFlow (O’Reilly Media) [Google Scholar]
  21. Grinstead, C., & Snell, J. 1997, Introduction to Probability, 2nd ed. (Providence, RI: American Mathematical Society) [Google Scholar]
  22. Guido, S., & Müller, A. C. 2017, Introduction to Machine Learning with Python (O’Reilly Media) [Google Scholar]
  23. Guyon, I., & Elisseeff, A. 2003, J. Mach. Learn. Res., 3, 1157 [Google Scholar]
  24. Hastie, T., Tibshirani, R., & Friedman, J. 2009, The Elements of Statistical Learning (Springer: New York) [CrossRef] [MathSciNet] [Google Scholar]
  25. Hastie, T., Tibshirani, R., & Wainwright, M. 2015, Statistical Learning with Sparsity (Chapman and Hall/CRC) [CrossRef] [Google Scholar]
  26. Haugen, N. E., Brandenburg, A., & Dobler, W. 2004, Phys. Rev. E, 70, 016308 [NASA ADS] [CrossRef] [Google Scholar]
  27. Hennigh, O. 2017, ArXiv e-prints [arXiv:1705.09036] [Google Scholar]
  28. Hubbard, A., & Brandenburg, A. 2009, ApJ, 706, 712 [NASA ADS] [CrossRef] [Google Scholar]
  29. Hunter, J. D. 2007, Comput. Sci. Eng., 9, 90 [Google Scholar]
  30. Jepps, S. A. 1975, J. Fluid Mech., 67, 625 [NASA ADS] [CrossRef] [Google Scholar]
  31. Karak, B. B., Rheinhardt, M., Brandenburg, A., Käpylä, P. J., & Käpylä, M. J. 2014, ApJ, 795, 16 [NASA ADS] [CrossRef] [Google Scholar]
  32. Kluyver, T., Ragan-Kelley, B., Pérez, F., et al. 2016, in Positioning and Power in Academic Publishing: Players, Agents and Agendas, eds. F. Loizides, & B. Schmidt (IOS Press), 87 [Google Scholar]
  33. Krause, F., & Rädler, K. H. 1980, Mean-field Magnetohydrodynamics and Dynamo Theory [Google Scholar]
  34. Krause, F., & Steenbeck, M. 1967, Z. Naturforsch. Teil A, 22, 671 [NASA ADS] [CrossRef] [Google Scholar]
  35. Kutz, J. N. 2013, Data-Driven Modeling& Scientific Computation: Methods for Complex Systems& Big Data (New York: Oxford University Press, Inc.) [Google Scholar]
  36. Kutz, J. N. 2017, J. Fluid Mech., 814, 1 [NASA ADS] [CrossRef] [Google Scholar]
  37. LeCun, Y., Bengio, Y., & Hinton, G. E. 2015, Nature, 521, 436 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  38. Louppe, G. 2014, PhD Thesis, University of Liege, Belgium [Google Scholar]
  39. Lusch, B., Kutz, J. N., & Brunton, S. L. 2018, Nat. Commun., 9 [Google Scholar]
  40. McKinney, W. 2010, in Proceedings of the 9th Python in Science Conference, eds. S. van der Walt, & J. Millman, 51 [Google Scholar]
  41. Meinshausen, N., & Bühlmann, P. 2010, J. R. Stat. Soc. Ser. B (Stat. Method.), 72, 417 [CrossRef] [Google Scholar]
  42. Nauman, F., & Blackman, E. G. 2014, MNRAS, 441, 1855 [NASA ADS] [CrossRef] [Google Scholar]
  43. Navon, I. M. 2009, in Data Assimilation for Numerical Weather Prediction: A Review, eds. S. K. Park, & L. Xu (Berlin, Heidelberg: Springer), 21 [Google Scholar]
  44. Olson, R. S., Cava, W. L., Mustahsan, Z., Varik, A., & Moore, J. H. 2017, Biocomputing 2018 (World Scientific) [Google Scholar]
  45. Pedregosa, F., Varoquaux, G., Gramfort, A., et al. 2011, J. Mach. Learn. Res., 12, 2825 [Google Scholar]
  46. Pouquet, A., Frisch, U., & Leorat, J. 1976, J. Fluid Mech., 77, 321 [NASA ADS] [CrossRef] [Google Scholar]
  47. Raschka, S. 2018, CoRR [arXiv:1811.12808] [Google Scholar]
  48. Rheinhardt, M., & Brandenburg, A. 2010, A&A, 520, A28 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  49. Rheinhardt, M., & Brandenburg, A. 2012, Astron. Nachr., 333, 71 [NASA ADS] [CrossRef] [Google Scholar]
  50. Schrinner, M., Rädler, K.-H., Schmitt, D., Rheinhardt, M., & Christensen, U. R. 2007, Geophys. Astrophys. Fluid Dyn., 101, 81 [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  51. Shukurov, A., Sokoloff, D., Subramanian, K., & Brandenburg, A. 2006, A&A, 448, L33 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  52. Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T., & Zeileis, A. 2008, BMC Bioinf., 9, 307 [CrossRef] [Google Scholar]
  53. Subramanian, K. 2019, Galaxies, 7, 47 [NASA ADS] [CrossRef] [Google Scholar]
  54. Tibshirani, R. 1996, J. R. Stat. Soc. Ser. B (Method.), 58, 267 [Google Scholar]
  55. Tilgner, A., & Brandenburg, A. 2008, MNRAS, 391, 1477 [NASA ADS] [CrossRef] [Google Scholar]
  56. Tobias, S. M., & Cattaneo, F. 2013, Nature, 497, 463 [NASA ADS] [CrossRef] [Google Scholar]
  57. Vainshtein, S. I., & Cattaneo, F. 1992, ApJ, 393, 165 [NASA ADS] [CrossRef] [Google Scholar]
  58. Walt, S. V. D., Colbert, S. C., & Varoquaux, G. 2011, Sci. Eng., 13, 22 [Google Scholar]
  59. Wolpert, D. H. 1992, Neural Netw., 5, 241 [CrossRef] [Google Scholar]
  60. Wurster, J., & Li, Z.-Y. 2018, Front. Astron. Space Sci., 5, 39 [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.