Open Access
Issue
A&A
Volume 620, December 2018
Article Number A27
Number of page(s) 20
Section Galactic structure, stellar clusters and populations
DOI https://doi.org/10.1051/0004-6361/201833042
Published online 26 November 2018
  1. Allison, R. J., Goodwin, S. P., Parker, R. J., et al. 2009, MNRAS, 395, 1449 [Google Scholar]
  2. Ballesteros-Paredes, J., Hartmann, L., & Vázquez-Semadeni, E. 1999, ApJ, 527, 285 [NASA ADS] [CrossRef] [Google Scholar]
  3. Barrow, J. D., Bhavsar, S. P., & Sonoda, D. H. 1985, MNRAS, 216, 17 [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  4. Bastian, N., Covey, K. R., & Meyer, M. R. 2010, ARA&A, 48, 339 [NASA ADS] [CrossRef] [Google Scholar]
  5. Bate, M. R., Bonnell, I. A., & Bromm, V. 2003, MNRAS, 339, 577 [NASA ADS] [CrossRef] [Google Scholar]
  6. Bressert, E., Bastian, N., Gutermuth, R., et al. 2010, MNRAS, 409, L54 [NASA ADS] [Google Scholar]
  7. Cartwright, A., & Whitworth, A. P. 2004, MNRAS, 348, 589 [NASA ADS] [CrossRef] [Google Scholar]
  8. Chapman, N. L., Goldsmith, P. F., Pineda, J. L., et al. 2011, ApJ, 741, 21 [NASA ADS] [CrossRef] [Google Scholar]
  9. Dijkstra, E. W. 1960, Some Theorems On Spanning Subtrees of a Graph : CWI Technical Report Stichting Mathematisch Centrum. [Google Scholar]
  10. Duchêne, G., & Kraus, A. 2013, ARA&A, 51, 269 [Google Scholar]
  11. Elmegreen, B. G., Efremov, Y., Pudritz, R. E., & Zinnecker, H. 2000, Protostars and Planets IV (Tucson: University of Arizona Press), 179 [Google Scholar]
  12. Ester, M., Kriegel, H., Sander, J., & Xu, X. 1996, Proc. Second International Conf. on Knowledge Discovery and Data Mining (Portland, OR: AAAI Press), 226 [Google Scholar]
  13. Everitt, B. S., Landau, S., Leese, M., & Stahl, D. 2011, Cluster Analysis, 5th edn. (New York, NY: John Wiley & Sons) [CrossRef] [Google Scholar]
  14. Farias, J. P., Tan, J. C., & Chatterjee, S. 2017, ApJ, 838, 116 [NASA ADS] [CrossRef] [Google Scholar]
  15. Filippone, M., Camastra, F., Masulli, F., & Rovetta, S. 2008, Pattern Recogn., 41, 176 [CrossRef] [Google Scholar]
  16. Fraley, C., & Raftery, A. E. 1998, Comput. J., 41, 578 [CrossRef] [Google Scholar]
  17. Fraley, C., & Raftery, A. E. 2002, J. Am. Stat. Assoc., 97, 611 [Google Scholar]
  18. Fraley, C., & Raftery, A. E. 2007, J. Classif., 24, 155 [CrossRef] [Google Scholar]
  19. Gladwin, P. P., Kitsionas, S., Boffin, H. M. J., & Whitworth, A. P. 1999, MNRAS, 302, 305 [NASA ADS] [CrossRef] [Google Scholar]
  20. Gomez, M., Hartmann, L., Kenyon, S. J., & Hewett, R. 1993, AJ, 105, 1927 [NASA ADS] [CrossRef] [Google Scholar]
  21. Gower, J. C., & Ross, G. J. S. 1969, Appl. Stat., 18, 54 [CrossRef] [Google Scholar]
  22. Gupta, M. R., & Chen, Y. 2011, Signal Process., 4, 223 [Google Scholar]
  23. Gutermuth, R. A., Megeath, S. T., Myers, P. C., et al. 2009, ApJS, 184, 18 [NASA ADS] [CrossRef] [Google Scholar]
  24. Hacar, A., Tafalla, M., Kauffmann, J., & Kovács, A. 2013, A&A, 554, A55 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  25. Hartigan, J. A. 1975, Clustering Algorithms, 99th edn. (New York, NY: John Wiley & Sons) [Google Scholar]
  26. Hartmann, L. 2002, ApJ, 578, 914 [NASA ADS] [CrossRef] [Google Scholar]
  27. Hartmann, L., & Burkert, A. 2007, ApJ, 654, 988 [NASA ADS] [CrossRef] [Google Scholar]
  28. Hartmann, L., Ballesteros-Paredes, J., & Bergin, E. A. 2001, ApJ, 562, 852 [NASA ADS] [CrossRef] [Google Scholar]
  29. Heithausen, A., Bensch, F., Stutzki, J., Falgarone, E., & Panis, J. F. 1998, A&A, 331, L65 [Google Scholar]
  30. Imai, H., & Inaba, M. 1995, in Proc. of the Third International Congress on Industrial and Applied Mathematics : ICIAM, 1st edn. (New York: John Wiley & Sons), 124 [Google Scholar]
  31. Inaba, M., Katoh, N., & Imai, H. 1994, in Proceedings of the Tenth Annual Symp. on Computational Geometry (New York: ACM), 332 [Google Scholar]
  32. Jain, A. K. 2010, Pattern Recogn. Lett., 31, 651 [Google Scholar]
  33. Joncour, I., Duchêne, G., & Moraux, E. 2017, A&A, 599, A14 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  34. Jones, B. F., & Herbig, G. H. 1979, AJ, 84, 1872 [NASA ADS] [CrossRef] [Google Scholar]
  35. Kanungo, T., Mount, D., Netanyahu, N., et al. 2002, IEEE Trans. Pattern Anal. Mach. Intell., 24, 881 [CrossRef] [Google Scholar]
  36. Kaufman, L., & Rousseeuw, P. J. 2008, Finding Groups in Data: An Introduction to Cluster Analysis (New York: John Wiley & Sons) [Google Scholar]
  37. Kenyon, S. J., Gómez, M., & Whitney, B. A. 2008, in Low Mass Star Formation in the Taurus-Auriga Clouds, ed. B. Reipurth, 405 [Google Scholar]
  38. Kirk, H., & Myers, P. C. 2011, ApJ, 727, 64 [NASA ADS] [CrossRef] [Google Scholar]
  39. Koch, P. M., Tang, Y.-W., Ho, P. T. P., et al. 2018, ApJ, 855, 39 [NASA ADS] [CrossRef] [Google Scholar]
  40. Könyves, V., André, P., Men’shchikov, A., et al. 2015, A&A, 584, A91 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  41. Kramer, C., Stutzki, J., & Winnewisser, G. 1996, A&A, 307, 915 [Google Scholar]
  42. Kraus, A. L., Herczeg, G. J., Rizzuto, A. C., et al. 2017, ApJ, 838, 150 [NASA ADS] [CrossRef] [Google Scholar]
  43. Kraus, A. L., & Hillenbrand, L. A. 2008, ApJ, 686, L111 [NASA ADS] [CrossRef] [Google Scholar]
  44. Krumholz, M. R., Matzner, C. D., & McKee, C. F. 2006, ApJ, 653, 361 [NASA ADS] [CrossRef] [Google Scholar]
  45. Kruskal, J. B. 1956, Proc. Amer. Math. Soc., 7, 48 [CrossRef] [MathSciNet] [Google Scholar]
  46. Kuhn, M. A., Feigelson, E. D., Getman, K. V., et al. 2014, ApJ, 787, 107 [Google Scholar]
  47. Küpper, A. H. W., Maschberger, T., Kroupa, P., & Baumgardt, H. 2011, MNRAS, 417, 2300 [NASA ADS] [CrossRef] [Google Scholar]
  48. Larson, R. B. 1995, MNRAS, 272, 213 [NASA ADS] [Google Scholar]
  49. Lee, C. W., & Myers, P. C. 1999, ApJS, 123, 233 [NASA ADS] [CrossRef] [Google Scholar]
  50. Lee, Y.-N., & Hennebelle, P. 2016, A&A, 591, A30 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  51. Li, H.-B., Fang, M., Henning, T., & Kainulainen, J. 2013, MNRAS, 436, 3707 [NASA ADS] [CrossRef] [Google Scholar]
  52. Liu, T., Wu, Y., & Zhang, H. 2012, ApJS, 202, 4 [NASA ADS] [CrossRef] [Google Scholar]
  53. Luhman, K. L., Allen, P. R., Espaillat, C., Hartmann, L., & Calvet, N. 2010, ApJS, 186, 111 [NASA ADS] [CrossRef] [Google Scholar]
  54. Marks, M., & Kroupa, P. 2012, A&A, 543, A8 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  55. Ménard, F., & Duchêne, G. 2004, A&A, 425, 973 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  56. Mirkin, B. 2005, Clustering For Data Mining: A Data Recovery Approach (London: Chapman & Hall/CRC) [CrossRef] [Google Scholar]
  57. Motte, F., André, P., Ward-Thompson, D., & Bontemps, S. 2001, A&A, 372, L41 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  58. Motte, F., Bontemps, S., & Louvet, F. 2018, ARA&A, in press, DOI: 10.1146/annurev-astro-091916-055235 [Google Scholar]
  59. Murtagh, F., & Contreras, P. 2012, Rev. Data Min. Knowl. Discovery, 2, 86 [CrossRef] [Google Scholar]
  60. Myers, P. C. 2009, ApJ, 700, 1609 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  61. Myers, P. C., Fuller, G. A., Goodman, A. A., & Benson, P. J. 1991, ApJ, 376, 561 [NASA ADS] [CrossRef] [Google Scholar]
  62. Onishi, T., Mizuno, A., Kawamura, A., Tachihara, K., & Fukui, Y. 2002, ApJ, 575, 950 [NASA ADS] [CrossRef] [Google Scholar]
  63. Palmeirim, P., André, P., Kirk, J., et al. 2013, A&A, 550, A38 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  64. Parker, R. J. 2014, MNRAS, 445, 4037 [NASA ADS] [CrossRef] [Google Scholar]
  65. Parker, R. J., & Goodwin, S. P. 2015, MNRAS, 449, 3381 [NASA ADS] [CrossRef] [Google Scholar]
  66. Pfalzner, S., Kirk, H., Sills, A., et al. 2016, A&A, 586, A68 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  67. Pineda, J. E., Offner, S. S. R., Parker, R. J., et al. 2015, Nature, 518, 213 [NASA ADS] [CrossRef] [Google Scholar]
  68. Planck Collaboration Int. XXXII (Adam, R., et al.) 2016, A&A, 586, A135 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  69. Pokhrel, R., Myers, P. C., Dunham, M. M., et al. 2018, ApJ, 853, 5 [NASA ADS] [CrossRef] [Google Scholar]
  70. Prim, R. C. 1957, Bell Syst. Tech. J., 36, 1389 [Google Scholar]
  71. Reipurth, B., & Mikkola, S. 2012, Nature, 492, 221 [Google Scholar]
  72. Sadavoy, S. I., Di Francesco, J., Bontemps, S., et al. 2010, ApJ, 710, 1247 [NASA ADS] [CrossRef] [Google Scholar]
  73. Sadavoy, S. I., & Stahler, S. W. 2017, MNRAS, 469, 3881 [NASA ADS] [CrossRef] [Google Scholar]
  74. Schmalzl, M., Kainulainen, J., Quanz, S. P., et al. 2010, ApJ, 725, 1327 [NASA ADS] [CrossRef] [Google Scholar]
  75. Schmeja, S. 2011, Astron. Nachr., 332, 172 [NASA ADS] [CrossRef] [Google Scholar]
  76. Schmeja, S., Kumar, M. S. N., & Ferreira, B. 2008, MNRAS, 389, 1209 [NASA ADS] [CrossRef] [Google Scholar]
  77. Scott, D. W. 1992, Multivariate Density Estimation: Theory, Practice, and Visualization (New York: John Wiley & Sons) [Google Scholar]
  78. Silverman, B. W. 1986, Density Estimation for Statistics and Data Analysis (London: Chapman & Hall/CRC) [Google Scholar]
  79. Simon, M. 1997, ApJ, 482, L81 [NASA ADS] [CrossRef] [Google Scholar]
  80. Smilgys, R., & Bonnell, I. A. 2017, MNRAS, 472, 4982 [NASA ADS] [CrossRef] [Google Scholar]
  81. Soler, J. D., & Hennebelle, P. 2017, A&A, 607, A2 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  82. Tafalla, M., & Hacar, A. 2015, A&A, 574, A104 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  83. Tan, P.-N., Steinbach, M., & Kumar, V. 2005, Introduction to Data Mining, 1st edn. (Boston: Addison-Wesley) [Google Scholar]
  84. Tan, J. C., Krumholz, M. R., & McKee, C. F. 2006, ApJ, 641, L121 [NASA ADS] [CrossRef] [Google Scholar]
  85. Tokovinin, A. 2017, MNRAS, 468, 3461 [NASA ADS] [CrossRef] [Google Scholar]
  86. Vazquez-Semadeni, E., Gonzalez-Samaniego, A., & Colin, P. 2017, MNRAS, 467, 1313 [Google Scholar]
  87. Wright, N. J., Parker, R. J., Goodwin, S. P., & Drake, J. J. 2014, MNRAS, 438, 639 [NASA ADS] [CrossRef] [Google Scholar]
  88. Xu, R., & Wunsch, D. 2005, IEEE Trans. Neural Networks, 16, 645 [Google Scholar]
  89. Zahn, C. T. 1971, IEEE Trans. Comput., 20, 68 [CrossRef] [Google Scholar]
  90. Zhang, Q., Qiu, K., Girart, J. M., et al. 2014, ApJ, 792, 116 [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.