Free Access
Issue
A&A
Volume 616, August 2018
Article Number A150
Number of page(s) 11
Section Atomic, molecular, and nuclear data
DOI https://doi.org/10.1051/0004-6361/201833003
Published online 05 September 2018
  1. Adam, Z. R., Hongo, Y., Cleaves II, H. J., et al. 2018, Sci. Rep., 8, 265 [NASA ADS] [CrossRef] [Google Scholar]
  2. Adande, G. R., Woolf, N. J., & Ziurys, L. M. 2013, Astrobiology, 13, 439 [NASA ADS] [CrossRef] [Google Scholar]
  3. Antol, I., Vazdar, M., Barbatti, M., Eckert-Maksic, M. 2008, Chem. Phys., 349, 308 [CrossRef] [Google Scholar]
  4. Bada, J. L., Chalmers, J. H., & Cleaves II, H. J. 2016, Phys. Chem. Chem. Phys., 18, 20085 [CrossRef] [Google Scholar]
  5. Barone, V., Latouche, C., Skouteris, D., et al. 2015, MNRAS, 453, L31 [NASA ADS] [CrossRef] [Google Scholar]
  6. Barth, M. C., Cochran, A. K., Fiddler, M. N., et al. 2013, J. Geophys. Res., 118, 8688 [Google Scholar]
  7. Becker, S., Schneider, C., Okamura, H., et al. 2018, Nat. Commun. 9, 163 [NASA ADS] [CrossRef] [Google Scholar]
  8. Benner, S. A., Kim, H.-J., Carrigan, M. A., et al. 2012, Acc. Chem. Res., 45, 2025 [CrossRef] [Google Scholar]
  9. Besker, N., & Gervasio, F. L. 2012, in Using Metadynamics and Path Collective Variables to Study Ligand Binding and Induced Conformational Transitions. Computational Drug Discovery and Design, Book Series: Methods in Molecular Biology, 819, 501 [Google Scholar]
  10. Bisschop, S. E., Jorgensen, J. K., van Dishoeck, E. F., & de Wachter, E. B. M. 2007, A&A, 465, 913 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  11. Blake, G. A., Sutton, E. C., Masson, C. R., & Phillips, T. G. 1987, ApJ, 315, 621 [NASA ADS] [CrossRef] [Google Scholar]
  12. Bockelee-Morvan, D., Lis, D. C., Wink, J. E., et al. 2000, A&A, 353, 1101 [NASA ADS] [Google Scholar]
  13. Bonomi, M., Branduardi, D., Bussi, G., et al. 2009, Comput. Phys. Commun., 180, 1961 [NASA ADS] [CrossRef] [Google Scholar]
  14. Branduardi, D., Gervasio, F. L., & Parrinello M. 2007, J. Chem. Phys., 126, 054103 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  15. Brucato, J. R., Baratta, G. A., & Strazzulla, G. 2006, A&A, 455, 395 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  16. Camacho, J. J., Diaz, L., Santos, M., et al. 2008, J. Phys. D-Appl. Phys., 41, 10 [Google Scholar]
  17. Car, R., & Parrinello, M. 1985, Phys. Rev. Lett., 55, 2471 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  18. Cassone, G., Creazzo, F., Giaquinta, P. V., et al. 2017a, Phys. Chem. Chem. Phys., 19, 20420 [CrossRef] [Google Scholar]
  19. Cassone, G., Pietrucci, F., Saija, F., et al. 2017b, Chem. Sci., 25, 1 [Google Scholar]
  20. Cassone, G., Pietrucci, F., & Saija, F., et al. 2017c, Sci. Rep., 7, 6901 [NASA ADS] [CrossRef] [Google Scholar]
  21. Churchwell, E., Wood, D., Myers, P. C., & Myers, R. V. 1986, ApJ, 305, 405 [NASA ADS] [CrossRef] [Google Scholar]
  22. Civiš, S., Kubat, P., Nishida, S., Kawaguchi, K. 2006, Chem. Phys. Lett., 418, 448 [NASA ADS] [CrossRef] [Google Scholar]
  23. Civis, S., Babankova, D., & Cihelkat, J., et al. 2008, J. Phys. Chem. A, 112, 7162 [CrossRef] [Google Scholar]
  24. Civis, M., Civis, S., Sovova, K., et al. 2011, Anal. Chem., 83, 1069 [CrossRef] [Google Scholar]
  25. Civiš, S., Kubelik, P., & Ferus, M. 2012, J. Phys. Chem. A, 116, 3137 [CrossRef] [Google Scholar]
  26. Civis, S., Ferus, M., Knizek, A., et al. 2016, Phys. Chem. Chem. Phys., 18, 27317 [CrossRef] [Google Scholar]
  27. Civiš, S., Knížek, A., Ivanek, O., et al. 2017, Nat. Astron., 1, 721 [NASA ADS] [CrossRef] [Google Scholar]
  28. Cloutier, P., Sicard-Roselli, C., Escher, E., & Sanche, L. 2007, J. Phys. Chem. B, 111, 1620 [CrossRef] [PubMed] [Google Scholar]
  29. Coates, A. J., Crary, F. J., Lewis, G. R., et al. 2007, Discovery of Heavy Negative ions in Titan's Ionosphere, 34, 6 [Google Scholar]
  30. Codella, C., Ceccarelli, C., Caselli, P., et al. 2017, A&A, 605, L3 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  31. Cooper, J. F., Cooper, P. D., Sittler, E. C., et al. 2009, Planet Space Sci., 57, 1607 [NASA ADS] [CrossRef] [Google Scholar]
  32. Costanzo, G., Saladino, R., Crestini, C., et al. 2007, BMC Evol. Biol., 7, S1 [CrossRef] [Google Scholar]
  33. Eckert-Maksić, M., Antol, I., Vazdar, M., et al. 2010, in Formamide as the Model Compound for Photodissociation Studies of the Peptide Bond, eds. P. Paneth, & A. Dybala-Defratyka (Springer Netherlands), Kinetics and Dynamics Challenges and Advances in Computational Chemistry and Physics, 77 [Google Scholar]
  34. Ferris, J. P., Wos, J. D., Nooner, D. W., et al. 1974, J. Mol. Evol., 3, 225 [NASA ADS] [CrossRef] [Google Scholar]
  35. Ferus, M., Civiš, S., Kubelik, P., et al. 2011a, Plasma Chem. Plasma Process., 31, 417 [CrossRef] [Google Scholar]
  36. Ferus, M., Kubelik, P., & Civiš, S. 2011b, J. Phys. Chem. A, 115, 12132 [CrossRef] [Google Scholar]
  37. Ferus, M., Kubelik, P., Kawaguchi, K., et al. 2011c, J. Phys. Chem. A, 115, 1885 [CrossRef] [Google Scholar]
  38. Ferus, M., Civiš, S., Mladek, A., et al. 2012, J. Am. Chem. Soc., 134, 20788 [CrossRef] [Google Scholar]
  39. Ferus, M., Michalčíková, R., Shestivská, V., et al. 2014, J. Phys. Chem., 118, 719 [CrossRef] [Google Scholar]
  40. Ferus, M., Knizek, A., Sponer, J. E., et al. 2015a, Chem. List, 109, 406 [Google Scholar]
  41. Ferus, M., Nesvorný, D., Šponer, J., et al. 2015b, Proc. Natl. Acad. Sci., 112, 657 [NASA ADS] [CrossRef] [Google Scholar]
  42. Ferus, M., Kubelík, P., Knížek, A., et al. 2017a, Sci. Rep. 7, 6275 [NASA ADS] [CrossRef] [Google Scholar]
  43. Ferus, M., Pietrucci, F., Saitta A. M., et al. 2017b, Proc. Natl. Acad. Sci., 114, 4306 [CrossRef] [Google Scholar]
  44. Geissler, P. L., Dellago, C., Chandler, D., et al. 2001, Science, 291, 2121 [NASA ADS] [CrossRef] [Google Scholar]
  45. Giannozzi, P., Baroni, S., Bonini, N., et al. 2009, J. Phys. Condens. Matter., 21, 395502 [CrossRef] [PubMed] [Google Scholar]
  46. Goesmann, F., Rosenbauer, H., Bredehoeft, J. H., et al. 2015, Science, 349 [Google Scholar]
  47. Gorb, L., Asensio, A., Tunon, I., & Ruiz-Lopez, M. F. 2005, Chem. Eur. J. 11, 6743 [CrossRef] [Google Scholar]
  48. Hartle, R. E., Sittler, Jr., E. C., Neubauer F. M., et al. 2006, in Preliminary interpretation of Titan Plasma Interaction as Observed by the Cassini Plasma Spectrometer: Comparisons with Voyager 1, 33, 1 [Google Scholar]
  49. Hébrard, E., Dobrijevic, M., Loison, J., et al. 2012, A&A, 541, A21 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  50. Hoerst, S. M., Yelle, R. V., Buch, A., et al. 2012, Astrobiology, 12, 809 [NASA ADS] [CrossRef] [Google Scholar]
  51. Hudson, J. S., Eberle, J. F., Vachhani, R. H., et al. 2012, Angew. Chemie. – Int. Ed., 51, 5134 [CrossRef] [Google Scholar]
  52. Jackson, D. A., Berg, P., & Symons, R. H. 1972, Proc. Natl. Acad. Sci. USA, 69, 2904 [NASA ADS] [CrossRef] [Google Scholar]
  53. Kahane, C., Ceccarelli, C., Faure, A., & Caux, E. 2013, ApJ, 763, L38 [NASA ADS] [CrossRef] [Google Scholar]
  54. Kakumoto, T., Saito, K., & Ikamura, A. 1985, J. Phys. Chem., 89, 2286 [CrossRef] [Google Scholar]
  55. Kang, T. Y., & Kim, H. L. 2006, Chem. Phys. Lett., 431, 24 [NASA ADS] [CrossRef] [Google Scholar]
  56. Kramida, A., Ralchenko, Y., Reader, J., & NIST ASD Team 2015, NIST Atomic Spectra Database ver. 5.3 (Gaithersburg, MD: National Institute of Standards and Technology) [Google Scholar]
  57. Kuan, Y. J., & Snyder, L. E. 1996, ApJ, 470, 981 [NASA ADS] [CrossRef] [Google Scholar]
  58. Laio, A., & Parrinello, M. 2002, Proc. Natl. Acad. Sci., 99, 12562 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  59. Laporte, S., Finocchi, F., Paulatto, L., et al. 2015, Phys. Chem. Chem. Phys., 17, 20382 [CrossRef] [Google Scholar]
  60. Levy, M., Miller, S. L., Oro, J. 1999, J. Mol. Evol., 49, 165 [NASA ADS] [CrossRef] [Google Scholar]
  61. Liu, D., Fang, W. H., & Fu, X. Y. 2000, Chem. Phys. Lett., 318, 291 [NASA ADS] [CrossRef] [Google Scholar]
  62. Marcelino, N., Bruenken, S., Cernicharo, J., et al. 2010, A&A, 516, A105 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  63. Mendoza, E., Lefloch, B., Lopez-Sepulcre, A., et al. 2014, MNRAS, 445, 151 [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  64. Mispelaer, F., Theule, P., Duvernay, F., et al. 2012, A&A, 540, A40 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  65. Miyakawa, S., Cleaves, H. J., & Miller, S. L. 2002, Orig. Life Evol. Biosph., 32, 195 [NASA ADS] [CrossRef] [Google Scholar]
  66. Muller, S., Beelen, A., Black, J. H., et al. 2013, A&A, 551, A109 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  67. Mumma, M. J., & Charnley, S. B. 2011, in The Chemical Composition of Comets-Emerging Taxonomies and Natal Heritage, eds. S. M. Faber, & E. VanDishoeck, Annual Review of Astronomy and Astrophysics, 471 [NASA ADS] [CrossRef] [Google Scholar]
  68. Nemes, L., Mohai, M., Donko, Z., & Bertoti, I. 2000, Spectrochim. Acta Part A – Mol. Biomol. Spectrosc., 56, 761 [NASA ADS] [CrossRef] [Google Scholar]
  69. Nguyen-Q-Rieu, H. C., Jackson, J. M., & Mauersberger, R. 1991, A&A, 241, L33 [NASA ADS] [Google Scholar]
  70. Nguyen V. S., Abbott, H. L., Dawley, M. M., et al. 2011, J. Phys. Chem. A, 115, 841 [CrossRef] [Google Scholar]
  71. Okabe, H. 1970, J. Chem. Phys., 53, 3507 [NASA ADS] [CrossRef] [Google Scholar]
  72. Perdew, J. P., Burke, K., & Ernzerhof, M. 1996, Phys. Rev. Lett., 77, 3865 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  73. Pietrucci, F., & Saitta, A. M. 2015, Proc. Natl. Acad. Sci. USA, 112, 15030 [NASA ADS] [CrossRef] [Google Scholar]
  74. Pino, S., Sponer, J. E., Costanzo, G., et al. 2015, Life, 5, 372 [CrossRef] [Google Scholar]
  75. Raulin, F., & Owen, T. 1998, Org. Chem. Exobiol. Titan, 377 [Google Scholar]
  76. Raunier, S., Chiavassa, T., Marinelli, F., et al. 2003a, J. Phys. Chem. A, 107, 9335 [CrossRef] [Google Scholar]
  77. Raunier, S., Chiavassa, T., Marinelli, F., et al. 2003b, Chem. Phys. Lett., 368, 594 [NASA ADS] [CrossRef] [Google Scholar]
  78. Rodriguez-Fernandez, N. J., Tafalla, M., Gueth, F., & Bachiller, R. 2010, A&A, 516, A98 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  79. Rothman, L. S., Gordon, I. E., Babikov, Y et al. 2013, J. Quant. Spectr. Rad. Transf., 130, 4 [NASA ADS] [CrossRef] [Google Scholar]
  80. Rubin, R. H., Swenson, G. W., Benson, R. C., et al. 1971, ApJ, 169, L39 [NASA ADS] [CrossRef] [Google Scholar]
  81. Saitta, A. M., & Saijam, F. 2014, Proc. Natl. Acad. Sci. USA, 111, 13768 [NASA ADS] [CrossRef] [Google Scholar]
  82. Saitta, A. M., Saija, F., & Giaquinta, P. V. 2012, Phys. Rev. Lett., 108, 207801 [NASA ADS] [CrossRef] [Google Scholar]
  83. Saladino, R., Crestini, C., Costanzo, G., & DiMauro, E. 2004, Curr. Org. Chem., 8, 1425 [CrossRef] [Google Scholar]
  84. Saladino, R., Crestini, C., Neri, V., et al., 2005, Chembiochem., 6, 1368 [CrossRef] [Google Scholar]
  85. Saladino, R., Neri, V., Crestini, C., et al. 2008, J. Am. Chem. Soc., 130, 15512 [CrossRef] [Google Scholar]
  86. Saladino, R., Crestini, C., Ciciriello, F., et al. 2009, Res. Microbiol., 160, 441 [CrossRef] [Google Scholar]
  87. Saladino, R., Neri, V., Crestini, C., et al. 2010, J. Mol. Evol., 71, 100 [NASA ADS] [CrossRef] [Google Scholar]
  88. Saladino, R., Crestini, C., Cossetti, C., et al. 2011, Orig. Life Evol. Biosph., 41, 437 [NASA ADS] [CrossRef] [Google Scholar]
  89. Saladino, R., Botta, G., Pino, S., et al. 2012a, Chem. Soc. Rev., 41, 5526 [CrossRef] [Google Scholar]
  90. Saladino, R., Crestini, C., Pino, S., et al. 2012b, Phys. Life Rev. 9, 84 [NASA ADS] [CrossRef] [Google Scholar]
  91. Saladino, R., Carota, E., Botta, G., et al. 2015, Proc. Natl. Acad. Sci., 112, E2746 [CrossRef] [Google Scholar]
  92. Senanayake, S. D., & Idriss, H. 2006, Proc. Natl. Acad. Sci. USA, 103, 1194 [NASA ADS] [CrossRef] [Google Scholar]
  93. Snyder, L. E., & Buhl, D. 1972, ApJ, 177, 619 [NASA ADS] [CrossRef] [Google Scholar]
  94. Šponer, J. E., Mladek, A., Sponer, J., Fuentes-Cabrera, M. 2012, J. Phys. Chem. A, 116, 720 [CrossRef] [Google Scholar]
  95. Šponer, J. E., Sponer, J., Novakova, O., et al. 2016a, Chem. Eur. J., 22, 3572 [CrossRef] [Google Scholar]
  96. Šponer, J. E., Szabla, R., Góra, R. W., et al. 2016b, Phys. Chem. Chem. Phys., 18, 20047 [CrossRef] [Google Scholar]
  97. Stuve, E. M. 2012, Chem. Phys. Lett., 1, 519 [Google Scholar]
  98. Sutherland, J. D. 2016, Angew. Chemie. – Int. Ed., 55, 104 [CrossRef] [Google Scholar]
  99. Taquet, V., Lopez-Sepulcre, A., Ceccarelli, C., et al. 2015, ApJ, 804, 29 [NASA ADS] [CrossRef] [Google Scholar]
  100. Turner, B. E., Terzieva, R., & Herbst, E. 1999, ApJ, 518, 699 [NASA ADS] [CrossRef] [Google Scholar]
  101. Wang, H., Liu, S.-L,. Liu, J., et al. 2007, Ch. J. Chem. Phys., 20, 388 [CrossRef] [Google Scholar]
  102. Wang, J., Gu, J., Nguyen, M. T., et al. 2013, J. Phys. Chem. B, 117, 9333 [CrossRef] [Google Scholar]
  103. Yu, S., Su, S., Dorenkamp, Y., et al. 2013, J. Phys. Chem. A., 117, 11673 [CrossRef] [Google Scholar]
  104. Yuasa, S., Flory, D., Basile, B., & Oró, J. 1984, J. Mol. Evol. J. Mol. Evol., 21, 76 [NASA ADS] [CrossRef] [Google Scholar]
  105. Zhang, X. Z., Zhen, Z., Liu, X. H. 2005, Sci. Ch. Ser. B-Chem., 48, 279 [CrossRef] [Google Scholar]
  106. Zhao, L., Liu, K., Dai, N. Z., & Li, Z. H. 2002, Acta Chim. Sin. 60, 600 [Google Scholar]
  107. Zizak, G. 2000, in Flame Emission Spectroscopy: Fundamentals and Applications. Lect Given ICS Train Course Lase Diagnostics Combust Process, 1. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.