Free Access
Issue
A&A
Volume 557, September 2013
Article Number A16
Number of page(s) 16
Section Astronomical instrumentation
DOI https://doi.org/10.1051/0004-6361/201321447
Published online 14 August 2013
  1. Akbani, R., Kwek, S., & Japkowicz, N. 2004, in Proceedings of the 15th European Conference on Machine Learning (ECML), 39 [Google Scholar]
  2. Arnouts, S., Cristiani, S., Moscardini, L., et al. 1999, MNRAS, 310, 540 [NASA ADS] [CrossRef] [Google Scholar]
  3. Ball, N. M., Brunner, R. J., Myers, A. D., & Tcheng, D. 2006, ApJ, 650, 497 [NASA ADS] [CrossRef] [Google Scholar]
  4. Beckwith, S. V. W., Stiavelli, M., Koekemoer, A. M., et al. 2006, AJ, 132, 1729 [NASA ADS] [CrossRef] [Google Scholar]
  5. Bel, J., et al. 2013, A&A, submitted [Google Scholar]
  6. Bland-Hawthorn, J. 2012, RA&A, 12, E1 [Google Scholar]
  7. Boulade, O., Charlot, X., Abbon, P., et al. 2000, in SPIE Conf. Ser. 4008, eds. M. Iye, & A. F. Moorwood, 657 [Google Scholar]
  8. Brightman, M., & Nandra, K. 2012, MNRAS, 422, 1166 [NASA ADS] [CrossRef] [Google Scholar]
  9. Chang, C.-C., & Lin, C.-J. 2011, ACM Transactions on Intelligent Systems and Technology, 2, 27, software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm, issue = 3 [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  10. Chiu, K., Zheng, W., Schneider, D. P., et al. 2005, AJ, 130, 13 [NASA ADS] [CrossRef] [Google Scholar]
  11. Colless, M., Dalton, G., Maddox, S., et al. 2001, MNRAS, 328, 1039 [NASA ADS] [CrossRef] [Google Scholar]
  12. Colless, M., Peterson, B. A., Jackson, C., et al. 2003 [arXiv:astro-ph/0306581] [Google Scholar]
  13. Coupon, J., Ilbert, O., Kilbinger, M., et al. 2009, A&A, 500, 981 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  14. Cristianini, N., & Shawe-Taylor, J. 2000, An Introduction to Support Vector Machines: and Other Kernel-Based Learning Methods (Cambridge University Press) [Google Scholar]
  15. Davidzon, I., Bolzonella, M., et al. 2013, A&A, in press, DOI: 10.1051/0004-6361/201321511 [Google Scholar]
  16. de la Torre, S., Guzzo, L., Peacock, J. A., et al. 2013, A&A, in press, DOI: 10.1051/0004-6361/201321463 [Google Scholar]
  17. Drinkwater, M. J., Gregg, M. D., Hilker, M., et al. 2003, Nature, 423, 519 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  18. Emerson, J., & Sutherland, W. 2010, The Messenger, 139, 2 [NASA ADS] [Google Scholar]
  19. Fadely, R., Hogg, D. W., & Willman, B. 2012, ApJ, 760, 15 [NASA ADS] [CrossRef] [Google Scholar]
  20. Fritz, A., Scodeggio, M., et al. 2013, A&A, submitted [Google Scholar]
  21. Garilli, B., Le Fèvre, O., Guzzo, L., et al. 2008, A&A, 486, 683 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  22. Garilli, B., Paioro, L., Scodeggio, M., et al. 2012, PASP, 124, 1232 [NASA ADS] [CrossRef] [Google Scholar]
  23. Gavignaud, I., Bongiorno, A., Paltani, S., et al. 2007, VizieR Online Data Catalog, 345, 70079 [NASA ADS] [Google Scholar]
  24. Goranova, Y., Hudelot, P., Contini, T., et al. 2009, The CFHTLS T0006 Release, http://terapix.iap.fr/cplt/table_syn_T0006.html [Google Scholar]
  25. Guzzo, L., Scodeggio, M., Garilli, B., et al. 2013, A&A, submitted [arXiv:1303.2623] [Google Scholar]
  26. Hassan, T., Mirabal, N., Contreras, J. L., & Oya, I. 2013, MNRAS, 428, 220 [NASA ADS] [CrossRef] [Google Scholar]
  27. Henrion, M., Mortlock, D. J., Hand, D. J., & Gandy, A. 2011, MNRAS, 412, 2286 [NASA ADS] [CrossRef] [Google Scholar]
  28. Hsu, C.-W., Chang, C. C., & C.-J., L. 2010, A Practical Guide to Support Vector Classification, Department of Computer Science, National Taiwan University, Taiwan, http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf [Google Scholar]
  29. Huertas-Company, M., Rouan, D., Tasca, L., Soucail, G., & Le Fèvre, O. 2008, A&A, 478, 971 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  30. Ilbert, O., Arnouts, S., McCracken, H. J., et al. 2006, A&A, 457, 841 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  31. Ivezic, Z., Tyson, J. A., Axelrod, T., et al. 2009, in BAAS, 41, Am. Astron. Soc. Meet. Abstracts, 213, 460.03 [Google Scholar]
  32. Kaiser, N., Burgett, W., Chambers, K., et al. 2010, in SPIE Conf. Ser., 7733 [Google Scholar]
  33. Kron, R. G. 1980, ApJS, 43, 305 [NASA ADS] [CrossRef] [Google Scholar]
  34. Laureijs, R., Gondoin, P., Duvet, L., et al. 2012, in SPIE Conf. Ser., 8442 [Google Scholar]
  35. Le Fèvre, O., Saisse, M., Mancini, D., et al. 2000, in SPIE Conf. Ser. 4008, eds. M. Iye, & A. F. Moorwood, 546 [Google Scholar]
  36. Le Fèvre, O., Vettolani, G., Garilli, B., et al. 2005, A&A, 439, 845 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  37. Marchetti, A., Granett, B. R., Guzzo, L., et al. 2012, MNRAS, 107 [Google Scholar]
  38. Marulli, F., Bolzonella, M., Branchini, E., et al. 2013, A&A, 557, A17 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  39. Mellier, Y., Bertin, E., Hudelot, P., et al. 2008, The CFHTLS T0005 Release, http://terapix.iap.fr/cplt/oldSite/Descart/CFHTLS-T0005-Release.pdf [Google Scholar]
  40. Meyer, D. 2001, R News, 1, 23 [Google Scholar]
  41. Mohr, J. J., Armstrong, R., Bertin, E., et al. 2012, in Software and Cyberinfrastructure for Astronomy II., SPIE Conf. Ser., 8451 [Google Scholar]
  42. Peng, N., Zhang, Y., Zhao, Y., & Wu, X.-B. 2012, MNRAS, 425, 2599 [NASA ADS] [CrossRef] [Google Scholar]
  43. Pierre, M., Valtchanov, I., Altieri, B., et al. 2004, J. Cosmol. Astropart. Phys., 9, 11 [NASA ADS] [CrossRef] [Google Scholar]
  44. Pollo, A., Rybka, P., & Takeuchi, T. T. 2010, A&A, 514, A3 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  45. Puget, P., Stadler, E., Doyon, R., et al. 2004, in SPIE Conf. Ser. 5492, eds. A. F. M. Moorwood, & M. Iye, 978 [Google Scholar]
  46. Raskutti, B., & Kowalczyk, A. 2004, SIGKDD Explor. Newsl., 6, 60 [CrossRef] [Google Scholar]
  47. Richards, G. T., Fan, X., Newberg, H. J., et al. 2002, AJ, 123, 2945 [NASA ADS] [CrossRef] [Google Scholar]
  48. Saglia, R. P., Tonry, J. L., Bender, R., et al. 2012, ApJ, 746, 128 [NASA ADS] [CrossRef] [Google Scholar]
  49. Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525 [NASA ADS] [CrossRef] [Google Scholar]
  50. Scodeggio, M., Franzetti, P., Garilli, B., Le Fèvre, O., & Guzzo, L. 2009, The Messenger, 135, 13 [NASA ADS] [Google Scholar]
  51. Shawe-Taylor, J., & Cristianini, N. 2004, Kernel Methods for Pattern Analysis (Cambridge University Press) [Google Scholar]
  52. Sholl M. J., Ackerman M. R., Bebek C., et al. 2012, in Ground-based and Airborne Instrumentation for Astronomy IV, Proc. SPIE 8446, 844667 [Google Scholar]
  53. Solarz, A., Pollo, A., Takeuchi, T. T., et al. 2012, A&A, 541, A50 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  54. Stern, D., Eisenhardt, P., Gorjian, V., et al. 2005, ApJ, 631, 163 [NASA ADS] [CrossRef] [Google Scholar]
  55. Stern, D., Assef, R. J., Benford, D. J., et al. 2012, ApJ, 753, 30 [NASA ADS] [CrossRef] [Google Scholar]
  56. Tang, Y., Zhang, Y.-Q., Chawla, N. V., & Krasser, S. 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39, 281 [CrossRef] [Google Scholar]
  57. Thibault, S., Cui, Q., Poirier, M., et al. 2003, in SPIE Conf. Ser. 4841, eds. M. Iye, & A. F. M. Moorwood, 932 [Google Scholar]
  58. Tian, J., Gu, H., & Liu, W. 2011, Neural Comput. Appl., 20, 203 [CrossRef] [Google Scholar]
  59. Vapnik, V. N. 1995, The Nature of Statistical Learning Theory (Springer) [Google Scholar]
  60. Vanschoenwinkel, B., & Manderick, B. 2005, in Proc. First international conference on Deterministic and Statistical Methods in Machine Learning, 256 [Google Scholar]
  61. Vasconcellos, E. C., de Carvalho, R. R., Gal, R. R., et al. 2011, AJ, 141, 189 [NASA ADS] [CrossRef] [Google Scholar]
  62. Walker, H. J., Volk, K., Wainscoat, R. J., Schwartz, D. E., & Cohen, M. 1989, AJ, 98, 2163 [NASA ADS] [CrossRef] [Google Scholar]
  63. Wittman, D. M., Tyson, J. A., Dell’Antonio, I. P., et al. 2002, in SPIE Conf. Ser. 4836, eds. J. A. Tyson, & S. Wolff, 73 [Google Scholar]
  64. Woźniak, P. R., Williams, S. J., Vestrand, W. T., & Gupta, V. 2004, AJ, 128, 2965 [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.