Issue 
A&A
Volume 527, March 2011



Article Number  A140  
Number of page(s)  22  
Section  Planets and planetary systems  
DOI  https://doi.org/10.1051/00046361/201015861  
Published online  11 February 2011 
Online material
Upper mass limits for substellar companion candidates detected via radial velocities.
Appendix A: Apparent orbit and astrometric signature
The astrometric signature of a planetary or brown dwarf companion corresponds to the size of the apparent orbit of the primary star, i.e. on the projection of the true orbit into the tangential plane. Thus, the conversion of the semimajor axes of the true orbit into angular units only provides an upper limit for the observable astrometric signature of any given companion; the true observable astrometric signature might be considerably smaller, depending mainly on the eccentricity, the longitude of the periastron and the inclination. In the most extreme case, the semimajor axis of the apparent orbit corresponds to the semiminor axis of the true orbit only, and the semiminor axis of the apparent orbit could even be identical to zero.
The size of the apparent orbit, i.e. its semimajor and semiminor axis, can be calculated from the orbital elements of the true orbit. Note that most textbooks on double stars cover only the opposite problem, namely the reconstruction of the true orbit from the observed apparent orbit of a visual double star, for which there exist numerous graphical and analytical methods (see e.g. Heintz 1978).
The Kowalsky method as formulated by Smart (1930) uses the following general quadratic equation for a conic section to describe the apparent orbit: (A.1)where the five parameters P, Q, R, S and T are determined by the five orbital elements semimajor axis a, eccentricity e, longitude of periastron ω, ascending node Ω, and inclination i. The equation describes an ellipse if P and Q have the same sign and are not equal. If R does not equal zero the ellipse is rotated in the given coordinate system. If S or T do not equal zero the ellipse is offset from the zero point of the coordinate system. According to Smart (1930), the coefficients in Eq. (A.1) are given by (A.2)where A, B, F and G denote the familiar ThieleInnes constants: (A.3)
Note that our scaling factor is different from the one used by Smart (1930), because it is convenient for our purposes if the absolute term in Eq. (A.1) equals − 1.
In order to determine the semimajor and semiminor axes of the apparent orbit, we perform a principal axes transformation. We determine the eigenvalues λ_{1} and λ_{2} of the matrix ℳ (A.4)which describes the binary quadratic form A.1, as Inserting the eigenvalues into the characteristic equation, we obtain (A.7)which corresponds to Eq. (A.1) in a rotated and shifted coordinate system. From Eq. (A.7) we immediately determine the semimajor axis a_{app} and the semiminor axis b_{app} of the apparent orbit as (A.8)The astrometric signature α then directly corresponds to the semimajor axis of the apparent orbit, a_{app}, converted to angular units with the help of the parallax ϖ: (A.9)Astrometric measurements are sometimes only performed in one dimension at a time; examples are Hipparcos or PRIMA (Delplancke 2008). In the case of PRIMA the observing direction is given by the baseline orientation, which is flexible to a certain degree. Thus, it might be advantageous for scheduling purposes to know the direction where most of the astrometric signal can be expected, i.e. the orientation of the apparent orbit. The rotation which leads from Eqs. (A.1) to (A.7) is characterized by the rotation angle ϕ, which can be obtained from (A.10)If the sign of R and P − Q is taken into account, this returns an angle ϕ in the range between 0 and 360 ° corresponding to the position angle of the semimajor axis of the apparent orbit.
© ESO, 2011
Current usage metrics show cumulative count of Article Views (fulltext article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 4896 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.