Open Access

Table 3

Spectroscopic reference studies. Top part: classical spectroscopy, bottom part: machine-learning approaches.

Reference Instrument Wavelength (Å) Resolving power R Model/Method
Cristofari et al. (2022a) SPIRou 9670–23 200 70 000 MARCS
Mann et al. (2015) SNIFS 3200–9700 1000 SED fitting
Mann et al. (2015) SpeX 8000–24 000 2000 SED fitting
Maldonado et al. (2020) HARPS/HARPS-N 5300–6900 115 000 Pseudo EW(d)
Passegger et al. (2019)(a) CARMENES 7000–15 200 >80000(c) PHOENIX
Sarmento et al. (2021) APOGEE 15 000–17 000 22 500 MARCS
Souto et al. (2022) APOGEE 15 000–17 000 22 500 MARCS

Birky et al. (2020)(b) APOGEE 15 000–17 000 22 500 The Cannon
Passegger et al. (2022) CARMENES 8800–8835 >80000(c) Deep Learning A
Passegger et al. (2022) CARMENES 6477–12 816 >80000(c) Deep Learning C2

Notes. (a)In Passegger et al. (2019) the log g is given by evolutionary models (PARSEC) corresponding to Teff and [Fe/H] at each step of the spectrum fit.(b)Birky et al. (2020) only derived the parameters Teff and [Fe/H], all other studies Teff, log g, and [Fe/H].(c)The resolving power for CARMENES is R ∼ 94 600 and R ∼ 80 500 in the visible and NIR, respectively. (d) Maldonado et al. (2020) used ratios of pseudo-equivalent widths of spectral features described in Maldonado et al. (2015).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.