Issue |
A&A
Volume 642, October 2020
|
|
---|---|---|
Article Number | A22 | |
Number of page(s) | 16 | |
Section | Stellar atmospheres | |
DOI | https://doi.org/10.1051/0004-6361/202038787 | |
Published online | 30 September 2020 |
The CARMENES search for exoplanets around M dwarfs
A deep learning approach to determine fundamental parameters of target stars
1
Hamburger Sternwarte,
Gojenbergsweg 112,
21029
Hamburg,
Germany
e-mail: vpassegger@hs.uni-hamburg.de
2
Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma,
440 West Brooks Street,
Norman,
OK
73019,
USA
3
Departamento de Construcción e Ingeniería de Fabricación, Universidad de Oviedo, c/ Pedro Puig Adam, Sede Departamental Oeste,
Módulo 7, 1 a planta,
33203
Gijón,
Spain
4
Departamento de Ingeniería de Organización, Administración de Empresas y Estadística, Universidad Politécnica de Madrid,
c/ José Gutiérrez Abascal 2,
28006
Madrid,
Spain
5
Centro de Astrobiología (CSIC-INTA), ESAC,
Camino bajo del castillo s/n,
28692
Villanueva de la Cañada,
Madrid,
Spain
6
Departamento de Ingeniería Mecánica. Universidad de la Rioja. San José de Calazanz 31,
26004
Logroño,
La Rioja,
Spain
7
Institut de Ciències de l’Espai (CSIC-IEEC),
Campus UAB, c/ de Can Magrans s/n,
08193
Bellaterra,
Barcelona,
Spain
8
Institut d’Estudis Espacials de Catalunya (IEEC),
08034
Barcelona,
Spain
9
Institut für Astrophysik, Georg-August-Universität,
Friedrich-Hund-Platz 1,
37077
Göttingen,
Germany
10
Landessternwarte, Zentrum für Astronomie der Universtät Heidelberg,
Königstuhl 12,
69117
Heidelberg,
Germany
11
Instituto de Astrofísica de Andalucía (IAA-CSIC),
Glorieta de la Astronomía s/n,
18008
Granada,
Spain
12
Centro Astronómico Hispano-Alemán (CSIC-MPG), Observatorio Astronómico de Calar Alto,
Sierra de los Filabres,
04550
Gérgal,
Almería,
Spain
13
Instituto de Astrofísica de Canarias,
c/ Vía Láctea s/n,
38205
La Laguna,
Tenerife,
Spain
14
Departamento de Astrofísica, Universidad de La Laguna,
38206
La Laguna,
Tenerife,
Spain
15
Thüringer Landessternwarte Tautenburg,
Sternwarte 5,
07778
Tautenburg,
Germany
16
Max-Planck-Institut für Astronomie,
Königstuhl 17,
69117
Heidelberg,
Germany
17
Departamento de Física de la Tierra y Astrofísica and IPARCOS-UCM (Instituto de Física de Partículas y del Cosmos de la UCM), Facultad de Ciencias Físicas, Universidad Complutense de Madrid,
28040
Madrid,
Spain
18
Departamento de Inteligencia Artificial, UNED, Juan del Rosal, 16,
Madrid
28040,
Spain
19
Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas,
4150-762
Porto,
Portugal
Received:
29
June
2020
Accepted:
27
July
2020
Existing and upcoming instrumentation is collecting large amounts of astrophysical data, which require efficient and fast analysis techniques. We present a deep neural network architecture to analyze high-resolution stellar spectra and predict stellar parameters such as effective temperature, surface gravity, metallicity, and rotational velocity. With this study, we firstly demonstrate the capability of deep neural networks to precisely recover stellar parameters from a synthetic training set. Secondly, we analyze the application of this method to observed spectra and the impact of the synthetic gap (i.e., the difference between observed and synthetic spectra) on the estimation of stellar parameters, their errors, and their precision. Our convolutional network is trained on synthetic PHOENIX-ACES spectra in different optical and near-infrared wavelength regions. For each of the four stellar parameters, Teff, log g, [M/H], and v sin i, we constructed a neural network model to estimate each parameter independently. We then applied this method to 50 M dwarfs with high-resolution spectra taken with CARMENES (Calar Alto high-Resolution search for M dwarfs with Exo-earths with Near-infrared and optical Échelle Spectrographs), which operates in the visible (520–960 nm) and near-infrared wavelength range (960–1710 nm) simultaneously. Our results are compared with literature values for these stars. They show mostly good agreement within the errors, but also exhibit large deviations in some cases, especially for [M/H], pointing out the importance of a better understanding of the synthetic gap.
Key words: methods: data analysis / techniques: spectroscopic / stars: fundamental parameters / stars: late-type / stars: low-mass
© ESO 2020
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.