Open Access

Table B.1.

Label-wise average results of SPP-CNN and Trad-CNN evaluations using the CMX classification.

Classification Model Loss Class Label Correctly Predicted Wrongly Predicted Acca Acc Stdb
CMX Trad-CNN BCE 1 X 23 4 0.83 0.33
M 222 18 0.92 0.03
C 1064 523 0.67 0.04
0 NF 7840 1020 0.89 0.02
FX 19 14 0.36 0.41
FM 128 140 0.48 0.2
FC 1596 975 0.61 0.06
TSS 1 X 18 4 0.82 0.37
M 238 19 0.92 0.04
C 1113 478 0.69 0.08
0 NF 7883 1067 0.88 0.02
FX 41 34 0.68 0.29
FM 1621 893 0.64 0.06
FC 167 124 0.59 0.1
SPP-CNN BCE 1 X 26 0 1.0 0.0
M 291 10 0.97 0.04
C 1084 453 0.71 0.15
0 NF 8449 589 0.93 0.06
FX 17 2 0.5 0.5
FM 185 75 0.76 0.15
FC 1777 586 0.76 0.1
TSS 1 X 33 0 1.0 0.0
M 228 23 0.9 0.06
C 1112 473 0.7 0.12
0 NF 6236 2446 0.72 0.12
FX 7 30 0.18 0.37
FM 107 190 0.37 0.11
FC 1483 1023 0.59 0.17
(a)

Accuracy

(b)

Accuracy Standard deviation

Notes. Value underlined highlight the best result among all models and Loss function.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.