Open Access

Table 5.

Average results of evaluation of cross-validation of SPP-CNN and Trad-CNN based on classification and loss function.

Classification Architecture Loss TP TN FP FN Accuracy Precision Recall TSS TSS Std (a) PR AUC
CMX Trad-CNN BCE 1310 9584 2150 545 0.8 0.38 0.7 0.52 0.02 0.52
TSS 1369 9713 2118 502 0.81 0.39 0.73 0.55 0.06 0.57
SPP-CNN BCE 1401 10429 1253 464 0.87 0.56 0.76 0.65 0.16 0.68
TSS 1374 7834 3691 497 0.69 0.31 0.74 0.42 0.06 0.43

MX Trad-CNN BCE 242 7622 5779 71 0.58 0.06 0.77 0.35 0.17 0.08
TSS 177 10884 2323 93 0.82 0.08 0.67 0.5 0.09 0.11
SPP-CNN BCE 174 10827 1994 107 0.84 0.1 0.62 0.46 0.24 0.14
TSS 217 9460 3614 81 0.73 0.11 0.7 0.43 0.28 0.2

Notes.

(a)

True skill statistic standard deviation.

Underlined values highlight the best result between every models using the same classification.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.