Open Access

Table 2.

Parameters that are varied within the simulation-based inference pipeline and their priors.

Parameter Symbol Prior type Prior range Initial fiducial Final fiducial
Density fluctuation amp. S8 Flat [0.1, 1.3] 0.760 0.739
Hubble constant h0 Flat [0.64, 0.82] 0.767 0.653
Cold dark matter density ωc Flat [0.051, 0.255] 0.118 0.135
Baryonic matter density ωb Flat [0.019, 0.026] 0.026 0.023
Scalar spectral index ns Flat [0.84, 1.1] 0.901 0.972

Intrinsic alignment amp. AIA Flat [–6, 6] 0.264 0.603
Baryon feedback amp. Abary Flat [2, 3.13] 3.10 2.66
Redshift displacement δz Gaussian 𝒩(0, Cz) 0 0

Multiplicative shear bias M(p) Gaussian N ( M ¯ ( p ) , σ M ( p ) ) $ \mathcal{N}(\overline{M}^{(p)}, \sigma^{(p)}_{M}) $ M ¯ ( p ) $ \overline{M}^{(p)} $ M ¯ ( p ) $ \overline{M}^{(p)} $
Additive shear bias c 1 , 2 ( p ) $ c_{1,2}^{(p)} $ Gaussian N ( c ¯ 1 , 2 ( p ) , σ c 1 , 2 ( p ) ) $ \mathcal{N}(\overline{c}_{1,2}^{(p)}, \sigma^{(p)}_{c_{1,2}}) $ c ¯ 1 , 2 ( p ) $ \overline{c}_{1,2}^{(p)} $ c ¯ 1 , 2 ( p ) $ \overline{c}_{1,2}^{(p)} $
PSF variation shear bias α 1 , 2 ( p ) $ \alpha_{1,2}^{(p)} $ Gaussian N ( α ¯ 1 , 2 ( p ) , σ α 1 , 2 ( p ) ) $ \mathcal{N}(\overline{\alpha}_{1,2}^{(p)}, \sigma^{(p)}_{\alpha_{1,2}}) $ α ¯ 1 , 2 ( p ) $ \overline{\alpha}_{1,2}^{(p)} $ α ¯ 1 , 2 ( p ) $ \overline{\alpha}_{1,2}^{(p)} $

Notes. The prior ranges are selected to be exactly in line with previous KiDS-1000 analyses (Asgari et al. 2021; Heymans et al. 2021; Loureiro et al. 2022; van den Busch et al. 2022; Tröster et al. 2022). The upper five rows show the cosmological parameters of interest, while the three rows below show the nuisance parameters which quantify systematic biases. The last three rows show shear bias parameters for each tomographic bin, p, as given in Fig. 5 which are sampled implicitly within each simulation by drawing from the prior distribution, so any posterior is pre-marginalised over these parameters. For flat priors, the lower and upper limits of the normalised rectangular function defines the prior. For the Gaussian prior on δz, we use a 5D multivariate Gaussian with its mean at the zero vector and the covariance, Cz, defined by the one estimated in Hildebrandt et al. (2021). We note that for simplicity, the δz are implicitly marginalised throughout this analysis. The fiducial values given here constitute the fiducial parameter choice for the score compression described in Sect. 5.3.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.