Open Access

Table 3.

Timing parameters from Octau et al. (2018) and the TEMPONEST fit performed in this work.

Parameter Octau et al. (2018) This work
Right ascension, α (J2000) 16:18:18.8248(3) 16:18:18.82500(3)
Declination, δ (J2000) −39:21:01.815(10) −39:21:01.832(1)
Reference epoch (MJD) 56000 59000
Frequency, f (s−1) 83.421562665386(3)
Frequency derivative, f ˙ $ \dot{f} $ (10−16 s−2) −3.7437(6)
Second frequency derivative, f ¨ $ \ddot{f} $ (10−27 s−3) −1.0(2)
Dispersion measure, DM (cm−3 pc) 117.965(11) 117.950 0.002 + 0.003 $ ^{+0.003}_{-0.002} $
Dispersion measure derivative, DM1 (cm−3 pc s−1) −0.0062(5)
Second Dispersion measure derivative, DM2 (cm−3 pc s−2) −0.0008 0.0001 + 0.0002 $ ^{+0.0002}_{-0.0001} $
Right ascension proper motion, μα (mas yr−1) 1.24 0.13 + 0.14 $ ^{+0.14}_{-0.13} $
Declination proper motion, μδ (mas yr−1) −2.5(3)
Orbital period, Pb (d) 22.74559403(19) 22.7455991 0.0000004 + 0.0000003 $ ^{+0.0000003}_{-0.0000004} $
Orbital period derivative, b (10−11) −2.26 0.33 + 0.35 $ ^{+0.35}_{-0.33} $
Projected semi-major axis of orbit, x (lt-s) 10.278300(5) 10.278285 0.000002 + 0.000001 $ ^{+0.000001}_{-0.000002} $
Epoch of periastron, T0 (MJD) 56012.21639(15) 59014.635117 0.000015 + 0.000021 $ ^{+0.000021}_{-0.000015} $
Longitude of periastron, ω (°) −6.717(3) 353.2919 0.0003 + 0.0002 $ ^{+0.0002}_{-0.0003} $
Longitude of periastron derivative, ω ˙ $ \dot{\omega} $ (°yr−1) 0.00142 0.00010 + 0.00008 $ ^{+0.00008}_{-0.00010} $
Orbital eccentricity, e 0.0274133(10) 0.02741231(1)
Shapiro delay amplitude, h3 (10−7 s) 2.70 1.47 + 2.07 $ ^{+2.07}_{-1.47} $
Orthometric ratio, ς 0.68 0.09 + 0.13 $ ^{+0.13}_{-0.09} $
Span of timing data (MJD) 54963.0−57869.1 51395.2−55553.4
Number of ToAs 70 1535
Weighted residual rms (μs) 25.3 8.11
Reduced χ2 value 1.2 0.91

Derived parameters

Galactic longitude, l (°) 340.72 340.724887
Galactic latitude, b (°) 7.89 7.888043
DM-derived distance (NE2001), d (kpc) 2.7 2.7
DM-derived distance (YMW16), d (kpc) 5.5 5.5
Rotational period, P (ms) 11.987308585310(22) 11.98730841341(1)
Period derivative, (10−20) 5.408(18) 5.3796(9)
Total proper motion, μ (mas yr−1) < 6.0 2.8(3)
Heliocentric transverse velocity, vT (km s−1) 36(4)
Total mass, Mtot (M) 1 . 42 0.19 + 0.20 $ 1.42^{+0.20}_{-0.19} $
Pulsar mass, Mp (M) 1 . 20 0.20 + 0.19 $ 1.20^{+0.19}_{-0.20} $
Companion mass, Mc (M) 0 . 20 0.03 + 0.11 $ 0.20^{+0.11}_{-0.03} $
Intrinsic spin period derivative, int (10−20) 18(3)
Surface magnetic field, B (109 G) 0.814 1.5
Characteristic age, τc (Gyr) 3.5 1.1
Spin-down luminosity, Ė (1033 erg s−1) 1.24 4.1

Notes. All uncertainties are quoted to the left and right 39% confidence limits. We used the DDH model to fit for the Shapiro delay. The second column quotes the fitted and derived timing parameters from Octau et al. (2018) to the precision as given in Table 3 of their work. The numbers missing in the second column of the table have not been fit for by Octau et al. (2018). The reference epoch used for position and for period differs between the previous work and this work. In the second half of the table we present quantities derived from the fit values. Opposite to Octau et al. (2018) we measure the rotational frequency and its derivatives; hence, we quote to their period derivative in the second section. For the mass estimates see Sect. 4.5.3, for the equations to derive B,τc and Ė see Lorimer & Kramer (2005). The last three values are derived from int, meaning they are corrected for the kinematic effects.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.