Open Access

Table A.3.

Results of the non-parametric analysis of the gas kinematics using the [OIII] emission line.

Name W80 ΔV V05 V95 log ne log Mof of log Ėof
(km s−1) (km s−1) (km s−1) (km s−1) (cm−3) (M) (M yr−1) (erg s−1)
J0052-01 767 ± 3 −91 ± 3 −584 ± 5 401 ± 3 ( < 2.94) 5.530 ± 0.002 0 . 7 . 5 + 2.3 $ 0.7^{+2.3}_{-.5} $ 40.8
J0232-08 854 ± 2 −142 ± 1 −681 ± 2 398 ± 1 3 . 43 0.12 + 0.03 $ 3.43^{+0.03}_{-0.12} $ 5.109 ± 0.001 0 . 3 0.2 + 0.9 $ 0.3^{+0.9}_{-0.2} $ 40.5
J0731+39 699 ± 6 −82 ± 4 −611 ± 6 447 ± 9 3 . 97 0.05 + 0.06 $ 3.97^{+0.06}_{-0.05} $ 4.38 ± 0.01 0 . 1 0.0 + 0.2 $ 0.1^{+0.2}_{-0.0} $ 39.9
J0759+50 1361 ± 4 6 ± 6 −953 ± 7 965 ± 6 4 . 09 0.03 + 0.03 $ 4.09^{+0.03}_{-0.03} $ 4.52 ± 0.02 0 . 2 0.1 + 0.6 $ 0.2^{+0.6}_{-0.1} $ 40.9
J0802+25 1028 ± 6 −255 ± 3 −967 ± 5 456 ± 5 3 . 56 0.14 + 0.12 $ 3.56^{+0.12}_{-0.14} $ 5.04 ± 0.03 0 . 4 0.3 + 1.3 $ 0.4^{+1.3}_{- 0.3 } $ 41.0
J0802+46 893 ± 4 15 ± 3 −615 ± 4 645 ± 3 3 . 88 0.05 + 0.04 $ 3.88^{+0.04}_{-0.05} $ 4.575 ± 0.001 0 . 1 0.1 + 0.4 $ 0.1^{+ 0.4}_{- 0.1 } $ 40.3
J0805+28 938 ± 180 −140 ± 241 −776 ± 121 496 ± 362 3 . 59 0.16 + 0.08 $ 3.59^{+0.08}_{-0.16} $ 4.84 ± 0.71 0 . 2 0.1 + 0.7 $ 0.2^{+ 0.7}_{- 0.1 } $ 40.6
J0818+36 545 ± 2 −53 ± 2 −436 ± 3 329 ± 1 3 . 67 0.1 + 0.06 $ 3.67^{+0.06}_{-0.1} $ 4.749 ± 0.001 0 . 1 0.1 + 0.3 $ 0.1^{+ 0.3}_{- 0.1 } $ 39.7
J0841+01 423 ± 1 −18 ± 1 −297 ± 1 262 ± 1 2 . 32 0.13 + 0.24 $ 2.32^{+0.24}_{-0.13} $
J0858+31 735 ± 8 −102 ± 6 −636 ± 11 433 ± 10 ( 2 . 71 0.12 + 0.1 ) $ (2.71^{+0.1}_{-0.12}) $ 5.54 ± 0.03 1 . 1 0.7 + 3.3 $ 1.1^{+ 3.3}_{- 0.7 } $ 41.2
J0915+30 795 ± 8 74 ± 8 −535 ± 5 683 ± 15 3 . 41 0.06 + 0.05 $ 3.41^{+0.05}_{-0.06} $ 5.10 ± 0.02 0 . 5 0.3 + 1.5 $ 0.5^{+ 1.5}_{- 0.3 } $ 40.9
J0939+35 563 ± 2 −53 ± 1 −426 ± 2 321 ± 2 3 . 16 0.11 + 0.05 $ 3.16^{+0.05}_{-0.11} $ ... ...
J0945+17 1079 ± 6 −132 ± 8 −1005 ± 9 742 ± 14 3 . 39 0.1 + 0.08 $ 3.39^{+0.08}_{-0.1} $ 5.46 ± 0.01 1 . 5 1.0 + 4.9 $ 1.5^{+ 4.9}_{- 1.0 } $ 41.8
J1010+06 1490 ± 53 51 ± 31 −1073 ± 87 1176 ± 37 4 . 58 0.03 + 0.03 $ 4.58^{+0.03}_{-0.03} $ 3.75 ± 0.04 0 . 04 0.03 + 0.12 $ 0.04 ^{ + 0.12}_{- 0.03 } $ 40.4
J1015+00 531 ± 3 −38 ± 2 −393 ± 3 318 ± 3 3 . 16 0.18 + 0.06 $ 3.16^{+0.06}_{-0.18} $ 5.396 ± 0.003 0 . 4 0.3 + 1.3 $ 0.4^{+ 1.3}_{- 0.3 } $ 40.2
J1016+00 636 ± 6 −81 ± 3 −515 ± 5 354 ± 4 ( < 2.67) 5.813 ± 0.004 1 . 3 0.9 + 4.1 $ 1.3^{+ 4.1}_{- 0.9 } $ 40.9
J1034+60 763 ± 2 8 ± 2 −546 ± 3 562 ± 3 2 . 99 0.2 + 0.19 $ 2.99^{+0.19}_{-0.2} $ 5.586 ± 0.001 1 . 3 0.9 + 4.2 $ 1.3^{+ 4.2}_{- 0.9 } $ 41.3
J1036+01 482 ± 3 −44 ± 2 −362 ± 4 273 ± 3 3 . 28 0.18 + 0.06 $ 3.28^{+0.06}_{-0.18} $
J1100+08 1162 ± 7 −43 ± 7 −952 ± 13 865 ± 8 3 . 99 0.08 + 0.07 $ 3.99^{+0.07}_{-0.08} $ 4.92 ± 0.01 0 . 5 0.3 + 1.5 $ 0.5^{+ 1.5}_{- 0.3 } $ 41.3
J1137+61 529 ± 64 2 ± 10 −327 ± 31 331 ± 51 3 . 26 0 + 0.07 $ 3.26^{+0.07}_{-0} $ ... ...
J1152+10 553 ± 1 −39 ± 1 −382 ± 1 305 ± 1 3 . 39 0.13 + 0.02 $ 3.39^{+0.02}_{-0.13} $ 5.244 ± 0.001 0 . 2 0.2 + 0.8 $ 0.2^{+ 0.8}_{- 0.2 } $ 39.9
J1157+37 660 ± 6 −79 ± 4 −577 ± 8 419 ± 7 3 . 67 0.07 + 0.06 $ 3.67^{+0.06}_{-0.07} $ 4.72 ± 0.01 0 . 1 0.1 + 0.5 $ 0.1^{+ 0.5}_{- 0.1 } $ 40.2
J1200+31 766 ± 4 −146 ± 2 −695 ± 3 402 ± 4 3 . 42 0.06 + 0.08 $ 3.42^{+0.08}_{-0.06} $ 5.564 ± 0.001 1 . 1 0.7 + 3.4 $ 1.1^{+ 3.4}_{- 0.7 } $ 41.2
J1218+47 444 ± 2 −21 ± 1 −319 ± 2 277 ± 2 3.66a 4.83 ± 0.03 0 . 1 0.1 + 0.3 $ 0.1^{+ 0.3}_{-0.1 } $ 39.3
J1223+08 594 ± 7 −132 ± 4 −580 ± 10 315 ± 6 3 . 7 0.13 + 0.08 $ 3.7^{+0.08}_{-0.13} $ 4.90 ± 0.02 0 . 2 0.1 + 0.5 $ 0.2^{+ 0.5}_{- 0.1 } $ 40.2
J1238+09 641 ± 2 −49 ± 1 −438 ± 2 341 ± 2 ( 2 . 68 0.09 + 0.09 ) $ (2.68^{+0.09}_{-0.09}) $ 5.763 ± 0.001 1 . 0 0.6 + 3.0 $ 1.0^{+ 3.0}_{- 0.6 } $ 40.6
J1241+61 616 ± 7 −192 ± 5 −615 ± 9 231 ± 6 2 . 95 0.46 + 0.12 $ 2.95^{+0.12}_{-0.46} $ 5.38 ± 0.02 0 . 4 0.3 + 1.4 $ 0.4^{+ 1.4}_{- 0.3 } $ 40.6
J1244+65 1218 ± 6 −282 ± 6 −1149 ± 9 585 ± 9 3 . 31 0.22 + 0.05 $ 3.31^{+0.05}_{-0.22} $ 4.94 ± 0.02 0 . 4 0.3 + 1.3 $ 0.4^{+ 1.3}_{- 0.3 } $ 41.2
J1300+54 298 ± 1 −27 ± 0 −229 ± 1 175 ± 1 3 . 33 0.4 + 0.1 $ 3.33^{+0.1}_{-0.4} $
J1316+44 905 ± 15 −220 ± 18 −872 ± 37 432 ± 3 3.66a 4.84 ± 0.01 0 . 2 0.1 + 0.6 $ 0.2^{+ 0.6}_{- 0.1 } $ 40.6
J1347+12 2519 ± 150 −845 ± 337 −2466 ± 483 775 ± 192 4 . 27 0.05 + 0.08 $ 4.27^{+0.08}_{-0.05} $ 4.21 ± 0.24 0 . 1 0.1 + 0.4 $ 0.1^{+ 0.4}_{- 0.1 } $ 41.4
J1356-02 717 ± 8 −85 ± 7 −654 ± 11 483 ± 13 3 . 66 0.20 + 0.09 $ 3.66^{+0.09}_{-0.20} $ 4.64 ± 0.02 0 . 1 0.1 + 0.5 $ 0.1^{+ 0.5}_{- 0.1 } $ 40.4
J1356+10 861 ± 2 26 ± 1 −535 ± 2 586 ± 2 3 . 21 0.15 + 0.0 $ 3.21^{+0.0}_{-0.15} $ 5.794 ± 0.002 1 . 9 1.2 + 5.9 $ 1.9^{+5.9}_{- 1.2 } $ 41.3
J1405+40 650 ± 5 −124 ± 4 −606 ± 8 358 ± 2 4 . 1 0.19 + 0.15 $ 4.1^{+0.15}_{-0.19} $ 4.476 ± 0.003 0 . 1 0.0 + 0.2 $ 0.1^{+ 0.2}_{- 0.0 } $ 39.8
J1430+13 803 ± 3 −61 ± 2 −630 ± 4 509 ± 2 3 . 24 0.3 + 0.05 $ 3.24^{+0.05}_{-0.3} $ 5.646 ± 0.004 1 . 3 0.9 + 4.1 $ 1.3^{+ 4.1}_{- 0.9 } $ 41.2
J1436+13 627 ± 4 −66 ± 3 −530 ± 4 397 ± 5 3 . 4 0.17 + 0.08 $ 3.4^{+0.08}_{-0.17} $ 5.068 ± 0.001 0 . 3 0.2 + 0.9 $ 0.3^{+ 0.9}_{- 0.2 } $ 40.4
J1437+30 628 ± 2 −24 ± 1 −457 ± 2 409 ± 3 3 . 3 0.13 + 0.01 $ 3.3^{+0.01}_{-0.13} $ 5.301 ± 0.001 0 . 4 0.3 + 1.4 $ 0.4^{+ 1.4}_{- 0.3 } $ 40.5
J1440+53 775 ± 3 −2 ± 3 −667 ± 5 664 ± 2 3 . 92 0.08 + 0.09 $ 3.92^{+0.09}_{-0.08} $ 4.71 ± 0.01 0 . 2 0.1 + 0.7 $ 0.2^{+ 0.7}_{- 0.1 } $ 40.7
J1455+32 845 ± 4 −36 ± 3 −626 ± 4 555 ± 4 3 . 88 0.06 + 0.05 $ 3.88^{+0.05}_{-0.06} $ 4.507 ± 0.002 0 . 1 0.1 + 0.3 $ 0.1^{+ 0.3}_{- 0.1 } $ 40.2
J1509+04 1356 ± 9 −327 ± 7 −1233 ± 10 579 ± 9 3 . 41 0.21 + 0.11 $ 3.41^{+0.11}_{-0.21} $ 4.94 ± 0.03 0 . 4 0.3 + 1.3 $ 0.4^{+ 1.3}_{- 0.3 } $ 41.3
J1517+33 1210 ± 4 −79 ± 2 −823 ± 2 666 ± 3 2 . 98 0.31 + 0.23 $ 2.98^{+0.23}_{-0.31} $ 5.67 ± 0.02 1 . 8 1.2 + 5.6 $ 1.8^{+ 5.6}_{- 1.2 } $ 41.5
J1533+35 538 ± 6 −38 ± 7 −467 ± 15 391 ± 6 ( 2 . 44 0.13 + 0.11 ) $ (2.44^{+0.11}_{-0.13}) $ 5.88 ± 0.04 1 . 6 1.1 + 5.1 $ 1.6^{+ 5.1}_{- 1.1 } $ 41.0
J1548-01 497 ± 2 −59 ± 2 −415 ± 4 298 ± 5 ( 2 . 74 0.05 + 0.04 ) $ (2.74^{+0.04}_{-0.05}) $
J1558+35 561 ± 3 −125 ± 2 −533 ± 5 282 ± 3 3 . 23 0.26 + 0.12 $ 3.23^{+0.12}_{-0.26} $ 5.358 ± 0.002 0 . 5 0.3 + 1.4 $ 0.5^{+ 1.4}_{- 0.3 } $ 40.6
J1624+33 490 ± 4 −73 ± 2 −428 ± 4 282 ± 4 3 . 63 0.09 + 0.12 $ 3.63^{+0.12}_{-0.09} $ 4.77 ± 0.01 0 . 1 0.1 + 0.3 $ 0.1^{+ 0.3}_{- 0.1 } $ 39.7
J1653+23 494 ± 2 −57 ± 1 −403 ± 2 289 ± 1 3 . 26 0.04 + 0.14 $ 3.26^{+0.14}_{-0.04} $
J1713+57 1491 ± 10 −60 ± 10 −1121 ± 18 1001 ± 7 4 . 06 0.06 + 0.05 $ 4.06^{+0.05}_{-0.06} $ 4.64 ± 0.01 0 . 3 0.2 + 0.9 $ 0.3^{+0.9}_{-0.2} $ 41.2
J2154+11 582 ± 206 −50 ± 135 −452 ± 252 353 ± 17 3 . 27 0.05 + 0.16 $ 3.27^{+0.16}_{-0.05} $ 5.06 ± 0.54 0 . 3 0.2 + 0.8 $ 0.3^{+0.8}_{-0.2} $ 40.2

Notes. Column 1 is the abbreviated name of the QSO2, columns 2 and 3 give the derived quantities W80 and ΔV whilst columns 4 and 5 give V05 and V95. All quantities are given in km s−1. Column 6 lists the electron densities measured using either the transauroral technique or the [SII] ratios (between parenthesis). For the two objects where it was not possible to measure the densities, the assumed value of log ne = 3.66 is given and denoted by an a. Columns 7, 8, and 9 show the total outflow mass, mass outflow rate and the kinetic energy, assuming an outflow radius of 0.62 kpc. The errors given for mass outflow rates are obtained from deriving the outflow rates at the minimum (0.15 kpc) and maximum (1.89 kpc) outflow radii found by Fischer et al. (2018), whilst 0.62 kpc is the mean of the values presented there. Errors for the values of log Ėof are +0.6, −0.5.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.