Open Access

Table A.1

Reactions in our chemical network along with the rate coefficients.

Reaction Type Rate coefficient Reference
1 C+ + H2 → CHx + H H2 destruction, CHx formation 2.31 × 10−13 T−1.3 exp(−23/T) 1,19
2 C+ + H2 → C + 2H H2 destruction, C formation 0.99 × 10−13 T−1.3 exp(−23/T) 1
3 H3++CCHx+H2${\rm{H}}_3^ + + {\rm{C}} \to {\rm{C}}{{\rm{H}}_{\rm{x}}} + {{\rm{H}}_2}$ CHx formation 1.04 × 10−9 (300/T)0.00231 +
T1.5Σi=14ciexp(Ti/T);${T^{ - 1.5}}\Sigma _{i = 1}^4{c_i}\exp \left( { - {T_i}/T} \right);$
ci = [3.4 × 10−8, 6.97 × 10−9, 1.31 × 10−7, 1.51 × 10−4],
Ti = [7.62, 1.38, 26.6, 8110] 2, 3
4 H3++OOHx+H2${\rm{H}}_3^ + + {\rm{O}} \to {\rm{O}}{{\rm{H}}_{\rm{x}}} + {{\rm{H}}_2}$ OHx formation 1.99 × 109 T−0.190 3, 4
5 CHx + O → CO + H CO formation 7.7 × 10−11 1
6 OHx + C → CO + H CO formation 7.95 × 10−10 T−0.339 exp (0.108/T) 1, 5
7 H3++eH2+H${\rm{H}}_3^ + + {{\rm{e}}^ - } \to {{\rm{H}}_2} + {\rm{H}}$ Dissociative recombination 4.54 × 10−7 × T−0.52 11, 12
8 H3++e3H${\rm{H}}_3^ + + {{\rm{e}}^ - } \to 3{\rm{H}}$ Dissociative recombination 8.46 × 10−7 × T−0.52 11, 12
9 C+ + e → C + γ Radiative recombination 2.995×109α(1+α)1γ(1+β)1+γ${{2.995 \times {{10}^{ - 9}}} \over {\alpha {{(1 + \alpha )}^{1 - \gamma }}{{(1 + \beta )}^{1 + \gamma }}}}$ 13,14
10 C + γ → C+ + e Photoionisation 3.5 × 10−10 (G0/1.7)
exp(−3.76 AV) fs,C(NC,NH2)${f_{s,{\rm{C}}}}\left( {{N_{\rm{C}}},{N_{{{\rm{H}}_2}}}} \right)$ 6, 7
11 H2 + γ → 2H Photodissociation 4.2 × 10−11 G0
exp(4.18AV)fs,H2(NH2)$\exp \left( { - 4.18{A_V}} \right){f_{s,{{\rm{H}}_2}}}\left( {{N_{{{\rm{H}}_2}}}} \right)$ 6, 7
12 CO + γ → C + O Photodissociation 2.4 × 10−10 (G0/1.7)
exp(3.88AV)fs,CO(NCO,NH2)$\exp \left( { - 3.88{A_V}} \right){f_{s,{\rm{CO}}}}\left( {{N_{{\rm{CO}}}},{N_{{{\rm{H}}_2}}}} \right)$ 6, 8
13 CHx + γ → C + H Photodissociation 9.1 × 10−10 (G0/1.7) exp (−2.12 AV) 6
14 OHx + γ → O + H Photodissociation 3.8 × 10−10 (G0/1.7) exp (−2.66 AV) 6
15 H2 + CR → H2+ + e Cosmic-ray ionisation H 20
16 C + CR → C+ + e Cosmic-ray ionisation 3.85ζH 20
17 CO + CR → CO+ + O Cosmic-ray ionisation 6.52ζH 20,22
18 C+ + e + grain → C Grain-assisted recombination 4.558×1013 [ 1+6.089×103ψ1.128× (1+433.1T0.04845ψ0.81201.333×104lnT) ]1;$\matrix{ {4.558 \times {{10}^{ - 13}}\left[ {1 + 6.089 \times {{10}^{ - 3}}{\psi ^{1.128}} \times } \right.} \cr {{{\left. {\left( {1 + 433.1{T^{0.04845}}{\psi ^{ - 0.8120 - 1.333 \times {{10}^{ - 4}}\ln T}}} \right)} \right]}^{ - 1}};} \cr } $
15
19 H + H + grain → H2 + grain Grain-assisted formation of H2 3 × 10−17 17, 18
20 He + CR → He+ + e Cosmic-ray ionisation 1.1ζH 20,22
21 He+ + H2 → H+ + He + H Dissociative charge exchange 1.26 × 10−13 exp(−22.5/T) 3,27
22 He++H2He+H2+${\rm{H}}{{\rm{e}}^ + } + {{\rm{H}}_2} \to {\rm{He}} + {\rm{H}}_2^ + $ Charge exchange 7.2 × 10−15 25, 26
23 He+ + CO → He + C+ + O CO destruction 1.6 × 10−9 23
24 He+ + e → He + γ Radiative recombination 10−11 T−0.5 × [11.19 − 1.676 log10 T
−0.2852 (log10T)2 + 0.04433 (log10T)3] 21,22
25 He+ + e + grain → He + γ Grain-assisted recombination 5.572×1014 [ 1+3.185×107ψ1.512× (1+5115T3.903×107ψ0.49565.494×107lnT) ]1;$\matrix{ {5.572 \times {{10}^{ - 14}}\left[ {1 + 3.185 \times {{10}^{ - 7}}{\psi ^{1.512}} \times } \right.} \cr {{{\left. {\left( {1 + 5115{T^{3.903 \times {{10}^{ - 7}}}}{\psi ^{ - 0.4956 - 5.494 \times {{10}^{ - 7}}\ln T}}} \right)} \right]}^{ - 1}};} \cr } $
26 H3++COHCO++H2${\rm{H}}_3^ + + {\rm{CO}} \to {\rm{HC}}{{\rm{O}}^ + } + {{\rm{H}}_2}$ CO destruction, HCO+ formation 1.7 × 10−9 1
27 C+ + OHx → HCO+ C+ destruction, HCO+ formation 9.15 × 10−10 (0.62 + 45.41 T−1/2 1
28 HCO+ + e → CO + H Dissociative recombination 1.06 × 10−5 T−0.64 24
29 HCO+ + γ → CO + H+ Photodissociation 5.4 × 10−12 (G0/1.7) exp(−3.3 AV) 26

Notes. The rate coefficients are in cm3 s−1 for reactions 1-9, 21-24, and 26-28; in s−1 for reactions 10-17, 20, and 29; in cm3 s−1 Zd1${\rm{Z}}_{\rm{d}}^{ - 1}$ for 18, 19, and 25, where Zd is the dust abundance relative to the solar neighbourhood value of 0.01. ζH is the value of the cosmic ray ionisation rate in units of s−1 H−1; G0 is the flux of the radiation field in the Habing units; AV is the visual extinction defined in Eq. (10). In reaction 9,α=T/(6.67×103)$\alpha = \sqrt {T/\left( {6.67 \times {{10}^{ - 3}}} \right)} $, β=T/(1.9436×106)$\beta = \sqrt {T/\left( {1.9436 \times {{10}^6}} \right)} $, and γ = 0.7849 + 0.1597 exp (49550/T). In reactions 18 and 25, ψ = G0 exp(−1.87 AV) T/(ne/cm3)$\sqrt T /\left( {{n_{{{\rm{e}}^ - }}}/{\rm{c}}{{\rm{m}}^{ - 3}}} \right)$. We note that although Heays et al. (2017) provided an updated value of the unshielded photodissociation rate for reaction 11 of 5.7 × 10−11 (G0/1.7), here we use the old rate from Draine & Bertoldi (1996), that is ≈ 25% lower, for a fair comparison with T15. Reactions 20-29 are only part of extended HYACINTH.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.