Issue |
A&A
Volume 619, November 2018
|
|
---|---|---|
Article Number | A144 | |
Number of page(s) | 7 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201834008 | |
Published online | 15 November 2018 |
Production of atomic hydrogen by cosmic rays in dark clouds
1
INAF – Osservatorio Astrofisico di Arcetri,
Largo E. Fermi 5,
50125
Firenze,
Italy
e-mail: padovani@arcetri.astro.it
2
Max-Planck-Institut für Extraterrestrische Physik,
Giessenbachstr. 1,
85741
Garching,
Germany
3
Scuola Normale Superiore,
Piazza dei Cavalieri 7,
56126
Pisa,
Italy
Received:
3
August
2018
Accepted:
11
September
2018
Context. Small amounts of atomic hydrogen, detected as absorption dips in the 21 cm line spectrum, are a well-known characteristic of dark clouds. The abundance of hydrogen atoms measured in the densest regions of molecular clouds can only be explained by the dissociation of H2 by cosmic rays.
Aims. We wish to assess the role of Galactic cosmic rays in the formation of atomic hydrogen, for which we use recent developments in the characterisation of the low-energy spectra of cosmic rays and advances in the modelling of their propagation in molecular clouds.
Methods. We modelled the attenuation of the interstellar cosmic rays that enter a cloud and computed the dissociation rate of molecular hydrogen that is due to collisions with cosmic-ray protons and electrons as well as fast hydrogen atoms. We compared our results with the available observations.
Results. The cosmic-ray dissociation rate is entirely determined by secondary electrons produced in primary ionisation collisions. These secondary particles constitute the only source of atomic hydrogen at column densities above ~1021 cm−2. We also find that the dissociation rate decreases with column density, while the ratio between the dissociation and ionisation rates varies between about 0.6 and 0.7. From comparison with observations, we conclude that a relatively flat spectrum of interstellar cosmic-ray protons, such as suggested by the most recent Voyager 1 data, can only provide a lower bound for the observed atomic hydrogen fraction. An enhanced spectrum of low-energy protons is needed to explain most of the observations.
Conclusions. Our findings show that a careful description of molecular hydrogen dissociation by cosmic rays can explain the abundance of atomic hydrogen in dark clouds. An accurate characterisation of this process at high densities is crucial for understanding the chemical evolution of star-forming regions.
Key words: dust, extinction / ISM: clouds / atomic processes / molecular processes
© ESO 2018
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.