Table A.1.
MSR parameters of ETGs and properties of the samples used in this work and from the literature.
Reference | α | log(A) | Redshift range | z type | Ngal | Selection | Mass range |
---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
This work | 0.62 ± 0.04 | 0.52 ± 0.01 | 0.5 ≤ z ≤ 0.9 | Spec | 4786 | NUVrK+Dn4000 | 9.3 − 11.6 |
0.64 ± 0.01 | 0.59 ± 0.01 | 0.50 ≤ z < 0.58 | Spec | 1197 | NUVrK+Dn4000 | 10.1 − 11.8 | |
0.64 ± 0.04 | 0.57 ± 0.01 | 0.58 ≤ z < 0.65 | Spec | 1196 | NUVrK+Dn4000 | 10.3 − 11.8 | |
0.73 ± 0.02 | 0.52 ± 0.01 | 0.65 ≤ z < 0.74 | Spec | 1198 | NUVrK+Dn4000 | 10.5 − 11.7 | |
0.75 ± 0.03 | 0.47 ± 0.01 | 0.74 ≤ z ≤ 0.90 | Spec | 1195 | NUVrK+Dn4000 | 10.7 − 11.7 | |
HD-MM | 0.66 ± 0.07 | 0.54 ± 0.02 | 0.5 ≤ z ≤ 0.9 | Spec | 826 | NUVrK+Dn4000 | 10.1 − 11.7 |
0.63 ± 0.06 | 0.61 ± 0.02 | 0.50 ≤ z < 0.58 | Spec | 183 | NUVrK+Dn4000 | 10.1 − 11.4 | |
0.65 ± 0.02 | 0.58 ± 0.01 | 0.58 ≤ z < 0.65 | Spec | 182 | NUVrK+Dn4000 | 10.4 − 11.4 | |
0.72 ± 0.09 | 0.52 ± 0.02 | 0.65 ≤ z < 0.74 | Spec | 206 | NUVrK+Dn4000 | 10.5 − 11.5 | |
0.84 ± 0.22 | 0.50 ± 0.03 | 0.74 ≤ z ≤ 0.90 | Spec | 207 | NUVrK+Dn4000 | 10.7 − 11.6 | |
LD-MM | 0.62 ± 0.05 | 0.51 ± 0.01 | 0.5 ≤ z ≤ 0.9 | Spec | 826 | NUVrK+Dn4000 | 10.1 − 11.7 |
0.62 ± 0.05 | 0.58 ± 0.02 | 0.50 ≤ z < 0.58 | Spec | 183 | NUVrK+Dn4000 | 10.1 − 11.4 | |
0.78 ± 0.05 | 0.57 ± 0.02 | 0.58 ≤ z < 0.65 | Spec | 182 | NUVrK+Dn4000 | 10.4 − 11.4 | |
0.76 ± 0.05 | 0.48 ± 0.02 | 0.65 ≤ z < 0.74 | Spec | 206 | NUVrK+Dn4000 | 10.5 − 11.5 | |
0.81 ± 0.05 | 0.47 ± 0.02 | 0.74 ≤ z < 0.90 | Spec | 207 | NUVrK+Dn4000 | 10.7 − 11.5 | |
Allen et al. (2015)1 | 0.76 ± 0.04 | 0.41 ± 0.16 | 2.0 ≤ z ≤ 2.2 | Phot | 7 | UVJ | 9.8 − 11.5 |
Allen et al. (2015) | 0.76 ± 0.04 | 0.34 ± 0.09 | 2.0 ≤ z ≤ 2.2 | Phot | 30 | UVJ | 9.5 − 11.2 |
Barone et al. (2022)2 | 0.51 | 0.64 ± 0.02 | 0.014 ≤ z ≤ 0.1 | Spec | 524 | MS | 10 − 11.5 |
Barone et al. (2022) | 0.64 | 0.52 ± 0.01 | 0.6 ≤ z < 0.68 | Spec | 219 | MS | 10.5 − 11.5 |
Barone et al. (2022) | 0.77 | 0.46 ± 0.01 | 0.68 ≤ z ≤ 0.76 | Spec | 273 | MS | 10.5 − 11.5 |
Belli et al. (2015)3 | 0.76 | 0.31 | 1.0 ≤ z ≤ 1.6 | Spec | 51 | sSFR | 10.7 − 11.5 |
Chan et al. (2016)4 | 0.138 ± 0.192 | 0.40 ± 2.55 | z = 1.39 | Spec | 12 | sSFR | 10 − 11.5 |
Chan et al. (2016) | 0.447 ± 0.268 | 0.37 ± 7.29 | z = 1.39 | Spec | 12 | sSFR | 10.5 − 11.5 |
Chan et al. (2016) | 0.359 ± 0.135 | 0.44 ± 2.41 | z = 1.39 | Phot/Spec | 36 | sSFR | 10 − 11.5 |
Chan et al. (2016) | 0.576 ± 0.173 | 0.40 ± 6.58 | z = 1.39 | Phot/Spec | 36 | sSFR | 10.5 − 11.5 |
Chen et al. (2022)5 | 0.69 | 0.66 | 0.012 ≤ z ≤ 0.324 | Spec | 4437 | MS/Mz relation | 10 − 12 |
Cimatti et al. (2012)6 | 0.52 ± 0.05 | 0.69 | 0.0 ≤ z < 0.6 | Phot/Spec | ∼360 | Color/Spectra/sSFR/Morph | 10.5 − 11.8 |
Cimatti et al. (2012) | 0.47 ± 0.04 | 0.4 | 0.6 ≤ z < 0.9 | Phot/Spec | ∼360 | Color/Spectra/sSFR/Morph | 10.5 − 11.8 |
Cimatti et al. (2012) | 0.50 ± 0.04 | 0.27 | 0.9 ≤ z ≤ 3.0 | Phot/Spec | ∼360 | Color/Spectra/sSFR/Morph | 10.5 − 11.6 |
Damjanov et al. (2011)7 | 0.47 ± 0.06 | 0.42 | 0.2 ≤ z < 0.8 | Spec | 212 | Spectro/Morph/Color | 10 − 12 |
Damjanov et al. (2011) | 0.51 ± 0.06 | 0.41 | 0.8 ≤ z < 1.4 | Spec | 199 | Spectro/Morph/Color | 10 − 12.1 |
Damjanov et al. (2011) | 0.52 ± 0.12 | 0.21 | 1.4 ≤ z < 2.0 | Spec | 44 | Spectro/Morph/Color | 10 − 11.8 |
Damjanov et al. (2011) | 0.51 ± 0.36 | −0.06 | 2.0 ≤ z ≤ 2.7 | Spec | 10 | Spectro/Morph/Color | 10 − 11.2 |
Damjanov et al. (2019) | 0.79 ± 0.05 | 0.65 ± 0.02 | 0.16 ≤ z < 0.26 | Spec | 492 | Dn4000 | 10.2 − 11.6 |
Damjanov et al. (2019) | 0.90 ± 0.04 | 0.58 ± 0.02 | 0.26 ≤ z < 0.36 | Spec | 1527 | Dn4000 | 10.2 − 12.2 |
Damjanov et al. (2019) | 0.87 ± 0.03 | 0.51 ± 0.01 | 0.36 ≤ z < 0.48 | Spec | 840 | Dn4000 | 10.6 − 11.9 |
Damjanov et al. (2019) | 0.70 ± 0.09 | 0.49 ± 0.03 | 0.48 ≤ z ≤ 0.65 | Spec | 487 | Dn4000 | 11 − 12.1 |
Damjanov et al. (2022) | 0.510 ± 0.012 | 0.76 ± 0.01 | 0.05 ≤ z ≤ 0.07 | Spec | 31001 | Dn4000 | 10 − 11.7 |
Damjanov et al. (2022) | 0.643 ± 0.024 | 0.61 ± 0.01 | 0.1 ≤ z ≤ 0.6 | Spec | 2906 | Dn4000 | 9.2 − 12.3 |
Damjanov et al. (2023)8 | 0.67 ± 0.01 | 0.57 ± 0.01 | 0.2 ≤ z ≤ 0.5 | Spec | 23113 | Dn4000 | 10 − 12 |
Damjanov et al. (2023) | 0.661 ± 0.009 | 0.799 ± 0.003 | 0.2 ≤ z < 0.3 | Spec | 9205 | Dn4000 | 10.4 − 11.8 |
Damjanov et al. (2023) | 0.749 ± 0.011 | 0.762 ± 0.020 | 0.3 ≤ z < 0.4 | Spec | 7710 | Dn4000 | 10.6 − 11.9 |
Damjanov et al. (2023) | 0.788 ± 0.014 | 0.720 ± 0.003 | 0.4 ≤ z < 0.5 | Spec | 6198 | Dn4000 | 10.6 − 11.9 |
Damjanov et al. (2023) | 0.882 ± 0.029 | 0.614 ± 0.010 | 0.5 ≤ z ≤ 0.6 | Spec | 2949 | Dn4000 | 10.9 − 12 |
Delaye et al. (2014)9 | 0.52 ± 0.08 | 0.52 ± 0.03 | 0.7 ≤ z < 0.9 | Phot/Spec | 130 | Morph | 10.5 − 11.6 |
Delaye et al. (2014) | 0.48 ± 0.08 | 0.48 ± 0.03 | 0.9 ≤ z < 1.1 | Phot/Spec | 96 | Morph | 10.5 − 11.6 |
Delaye et al. (2014) | 0.34 ± 0.10 | 0.44 ± 0.04 | 1.1 ≤ z ≤ 1.6 | Phot/Spec | 94 | Morph | 10.5 − 11.6 |
Delaye et al. (2014) | 0.47 ± 0.07 | 0.47 ± 0.02 | 0.7 ≤ z < 0.9 | Phot/Spec | 123 | Morph | 10.5 − 11.6 |
Delaye et al. (2014) | 0.57 ± 0.07 | 0.47 ± 0.02 | 0.9 ≤ z < 1.1 | Phot/Spec | 135 | Morph | 10.5 − 11.6 |
Delaye et al. (2014) | 0.5 ± 0.1 | 0.30 ± 0.02 | 1.1 ≤ z ≤ 1.6 | Phot/Spec | 125 | Morph | 10.5 − 11.6 |
Díaz-García et al. (2019b)10 | 0.71 ± 0.02 | 0.73 ± 0.04 | 0.1 ≤ z < 0.3 | Phot | ∼50 | MCDE | 10.5 − 11.6 |
Díaz-García et al. (2019b) | 0.71 ± 0.02 | 0.65 ± 0.04 | 0.3 ≤ z < 0.5 | Phot | ∼150 | MCDE | 10.5 − 11.5 |
Díaz-García et al. (2019b) | 0.71 ± 0.02 | 0.57 ± 0.05 | 0.5 ≤ z < 0.7 | Phot | ∼180 | MCDE | 10.5 − 11.5 |
Díaz-García et al. (2019b) | 0.71 ± 0.02 | 0.49 ± 0.05 | 0.7 ≤ z ≤ 0.9 | Phot | 263 | MCDE | 10.5 − 11.6 |
Faisst et al. (2017)11 | 0.55 ± 0.05 | 0.5 | 0.5 ≤ z < 1.0 | Phot | ∼800 | NUVrJ | 10 − 12 |
Faisst et al. (2017) | 0.62 ± 0.09 | 0.3 | 1.0 ≤ z < 1.5 | Phot | ∼800 | NUVrJ | 10 − 11.8 |
Faisst et al. (2017) | 0.59 ± 0.15 | 0.18 | 1.5 ≤ z ≤ 2.0 | Phot | ∼750 | NUVrJ | 10 − 11.9 |
Favole et al. (2018)12 | 0.238 ± 0.044 | 0.67 ± 0.18 | 0.2 ≤ z < 0.3 | Spec | < 75441 | De Veaucouleurs profile | 11.1 − 12 |
Favole et al. (2018) | 0.219 ± 0.022 | 0.70 ± 0.11 | 0.3 ≤ z < 0.43 | Spec | < 75441 | De Veaucouleurs profile | 11.1 − 12 |
Favole et al. (2018) | 0.202 ± 0.021 | 0.73 ± 0.12 | 0.43 ≤ z < 0.55 | Spec | < 153304 | De Veaucouleurs profile | 11 − 12.1 |
Favole et al. (2018) | 0.172 ± 0.015 | 0.75 ± 0.12 | 0.55 ≤ z ≤ 0.6 | Spec | < 153304 | De Veaucouleurs profile | 11.1 − 12.2 |
Fernández Lorenzo et al. (2013)13 | 0.56 | 0.62 | 0.01 ≤ z ≤ 0.05 | Spec | 15 | Morph/n | 9.9 − 11.4 |
Fernández Lorenzo et al. (2013) | 0.56 | 0.58 | 0.01 ≤ z ≤ 0.05 | Spec | 67 | Morph | 9.4 − 11.4 |
Fernández Lorenzo et al. (2013) | 0.54 | 0.54 ± 0.01 | 0.01 ≤ z ≤ 0.05 | Spec | 23 | Morph/n | 10.1 − 11.3 |
Fernández Lorenzo et al. (2013) | 0.60 | 0.66 ± 0.01 | 0.01 ≤ z ≤ 0.05 | Spec | ∼500 | Morph/n | 9.3 − 11.6 |
Gargiulo et al. (2017) | 0.59 ± 0.07 | 0.60 ± 0.01 | 0.5 ≤ z < 0.7 | Spec | 782 | NUVrK | 11 − 11.5 |
Gargiulo et al. (2017) | 0.70 ± 0.08 | 0.53 ± 0.02 | 0.7 ≤ z < 0.9 | Spec | 868 | NUVrK | 11 − 11.5 |
Gargiulo et al. (2017) | 0.52 ± 0.10 | 0.53 ± 0.02 | 0.9 ≤ z ≤ 1.0 | Spec | 372 | NUVrK | 11 − 11.5 |
Guo et al. (2009)14 | 0.91 ± 0.03 | 0.08 | 0.0 ≤ z ≤ 0.08 | Spec | 911 | CEN/n | 9.9 − 11.7 |
Guo et al. (2009) | 0.70 ± 0.05 | 0.63 | 0.0 ≤ z ≤ 0.08 | Spec | ∼450 | CEN/n | 9.9 − 11.7 |
Hamadouche et al. (2022) | 0.56 ± 0.04 | 0.47 ± 0.02 | 0.6 ≤ z ≤ 0.8 | Spec | 377 | UVJ | 10.3 − 11.5 |
Hamadouche et al. (2022) | 0.72 ± 0.06 | 0.28 ± 0.03 | 1.0 ≤ z ≤ 1.3 | Spec | 137 | UVJ | 10.3 − 11.6 |
Hon et al. (2023)15 | 0.88 | 0.53 | D ≤ 110 Mpc | 202 | Bulge/Spheroid | 9.5 − 12 | |
Huertas-Company et al. (2013b)16 | 0.59 ± 0.09 | 0.59 ± 0.10 | 0.2 ≤ z < 0.5 | Phot/Spec | 59 | NUVr | 10.5 − 11.4 |
Huertas-Company et al. (2013b) | 0.50 ± 0.11 | 0.34 ± 0.08 | 0.5 ≤ z < 0.8 | Phot/Spec | 123 | NUVr | 10.5 − 11.7 |
Huertas-Company et al. (2013b) | 0.59 ± 0.05 | 0.28 ± 0.02 | 0.8 ≤ z ≤ 1.0 | Phot/Spec | 210 | NUVr | 10.5 − 11.8 |
Huertas-Company et al. (2013b) | 0.52 ± 0.03 | 0.47 ± 0.03 | 0.2 ≤ z < 0.5 | Phot/Spec | 128 | NUVr | 10.5 − 11.9 |
Huertas-Company et al. (2013b) | 0.56 ± 0.04 | 0.41 ± 0.03 | 0.5 ≤ z < 0.8 | Phot/Spec | 110 | NUVr | 10.5 − 11.7 |
Huertas-Company et al. (2013b) | 0.49 ± 0.04 | 0.41 ± 0.03 | 0.8 ≤ z ≤ 1.0 | Phot/Spec | 155 | NUVr | 10.5 − 11.9 |
Ichikawa et al. (2012)17 | 0.126 ± 0.009 | 0.54 ± 0.01 | 0.25 ≤ z ≤ 3.0 | Phot/Spec | 408 | UVJ | 8 − 11.5 |
Ichikawa et al. (2012) | 0.129 ± 0.02 | 0.54 ± 0.03 | 0.25 ≤ z ≤ 0.5 | Phot/Spec | 28 | UVJ | 8 − 11.5 |
Ichikawa et al. (2012) | 0.133 ± 0.018 | 0.55 ± 0.02 | 0.5 ≤ z ≤ 0.75 | Phot/Spec | 70 | UVJ | 8.2 − 11.5 |
Ichikawa et al. (2012) | 0.118 ± 0.017 | 0.56 ± 0.01 | 0.75 ≤ z ≤ 1.0 | Phot/Spec | 134 | UVJ | 9 − 11.5 |
Ichikawa et al. (2012) | 0.153 ± 0.024 | 0.55 ± 0.01 | 1.0 ≤ z ≤ 1.25 | Phot/Spec | 83 | UVJ | 9.5 − 11.5 |
Ichikawa et al. (2012) | 0.125 ± 0.037 | 0.57 ± 0.02 | 1.25 ≤ z ≤ 1.5 | Phot/Spec | 32 | UVJ | 9.5 − 11.5 |
Ichikawa et al. (2012) | 0.166 ± 0.074 | 0.52 ± 0.03 | 1.5 ≤ z ≤ 2.0 | Phot/Spec | 28 | UVJ | 10.3 − 11.5 |
Ichikawa et al. (2012) | 0.250 ± 0.083 | 0.48 ± 0.02 | 2.0 ≤ z ≤ 2.5 | Phot/Spec | 27 | UVJ | 10.3 − 11.5 |
Ichikawa et al. (2012) | 0.48 ± 0.07 | 0.48 ± 0.02 | 2.5 ≤ z ≤ 3.0 | Phot/Spec | 6 | UVJ | 10.5 − 11.2 |
Ichikawa et al. (2012) | 0.132 ± 0.008 | 0.54 ± 0.01 | 0.25 ≤ z ≤ 3.0 | Phot/Spec | 445 | UVJ | 8 − 11.5 |
Ichikawa et al. (2012) | 0.165 ± 0.023 | 0.55 ± 0.03 | 0.25 ≤ z ≤ 0.50 | Phot/Spec | 31 | UVJ | 8 − 11.5 |
Ichikawa et al. (2012) | 0.137 ± 0.017 | 0.55 ± 0.02 | 0.50 ≤ z ≤ 0.75 | Phot/Spec | 73 | UVJ | 8.2 − 11.5 |
Ichikawa et al. (2012) | 0.119 ± 0.015 | 0.56 ± 0.01 | 0.75 ≤ z ≤ 1.0 | Phot/Spec | 141 | UVJ | 9 − 11.5 |
Ichikawa et al. (2012) | 0.150 ± 0.022 | 0.55 ± 0.01 | 1.0 ≤ z ≤ 1.25 | Phot/Spec | 88 | UVJ | 9.5 − 11.5 |
Ichikawa et al. (2012) | 0.152 ± 0.045 | 0.56 ± 0.02 | 1.25 ≤ z ≤ 1.5 | Phot/Spec | 35 | UVJ | 9.5 − 11.5 |
Ichikawa et al. (2012) | 0.077 ± 0.069 | 0.48 ± 0.02 | 1.5 ≤ z ≤ 2.0 | Phot/Spec | 36 | UVJ | 10.3 − 11.5 |
Ichikawa et al. (2012) | 0.281 ± 0.068 | 0.48 ± 0.02 | 2.0 ≤ z ≤ 2.5 | Phot/Spec | 32 | UVJ | 10.3 − 11.5 |
Ichikawa et al. (2012) | 0.251 ± 0.133 | 0.43 ± 0.04 | 2.5 ≤ z ≤ 3.0 | Phot/Spec | 9 | UVJ | 10.3 − 11.2 |
Kawinwanichakij et al. (2021) | 0.34 ± 0.01 | 0.55 | 0.2 ≤ z < 0.4 | Phot | 40259 | urz | 8.5 − 11.8 |
Kawinwanichakij et al. (2021) | 0.36 ± 0.01 | 0.53 | 0.4 ≤ z < 0.6 | Phot | 82714 | urz | 8.5 − 12 |
Kawinwanichakij et al. (2021) | 0.41 ± 0.01 | 0.47 | 0.6 ≤ z < 0.8 | Phot | 61486 | urz | 8.5 − 12 |
Kawinwanichakij et al. (2021) | 0.44 ± 0.01 | 0.42 | 0.8 ≤ z ≤ 1.0 | Phot | 57059 | urz | 8.8 − 12.1 |
Krogager et al. (2014) | 0.82 ± 0.22 | 0.30 ± 0.08 | 1.85 ≤ z ≤ 2.3 | Phot/Spec | 34 | UVJ | 10.6 − 11.7 |
Krogager et al. (2014) | 0.53 ± 0.29 | 0.29 ± 0.07 | 1.85 ≤ z ≤ 2.3 | Spec | 14 | UVJ | 10.8 − 11.7 |
Kuchner et al. (2017)18 | 0.43 | 0.55 | z = 0.44 | Spec | ∼293 | BRI | 9.2 − 11.3 |
Lani et al. (2013) | 0.31 | 0.45 | 0.5 ≤ z < 1.0 | Phot | ∼2900 | UVJ/sSFR | 9.8 − 12.2 |
Lani et al. (2013) | 0.44 | 0.3 | 1.0 ≤ z ≤ 2.0 | Phot | ∼2200 | UVJ/sSFR | 10.4 − 11.9 |
Lange et al. (2015)19 | 0.63 ± 0.03 | 0.580 ± 0.003 | 0.01 ≤ z ≤ 0.1 | Spec | 1300 | Morph | 10.3 − 11.3 |
Lange et al. (2016)20 | 0.329 ± 0.010 | 0.51 ± 0.01 | 0.002 ≤ z ≤ 0.06 | Spec | 806 | Morph | 8 − 11.2 |
Lange et al. (2016) | 0.643 ± 0.032 | 0.64 ± 0.09 | 0.002 ≤ z ≤ 0.06 | Spec | ∼400 | Morph | 10 − 11.2 |
Lange et al. (2016) | 0.786 ± 0.048 | 0.64 ± 56.99 | 0.002 ≤ z ≤ 0.06 | Spec | ∼400 | Morph | 10.3 − 11.2 |
Maltby et al. (2010)21 | 0.26 ± 0.07 | 0.47 ± 0.06 | 0.122 ≤ z ≤ 0.205 | Phot | 167 | Hubble type | 9 − 11.5 |
Maltby et al. (2010) | 0.30 ± 0.04 | 0.55 ± 0.04 | 0.05 ≤ z ≤ 0.3 | Phot | 89 | Hubble type | 9 − 11.5 |
McLure et al. (2013)22 | 0.56 | 0.23 | 1.3 ≤ z ≤ 1.5 | Spec | 41 | sSFR | 10.8 − 11.7 |
McLure et al. (2013) | 0.56 | 0.24 | 1.3 ≤ z ≤ 1.5 | Spec | 37 | n | 10.8 − 11.7 |
McLure et al. (2013) | 0.56 | 0.24 | 1.3 ≤ z ≤ 1.5 | Spec | < 41 | Formation time (old) | 10.8 − 11.7 |
McLure et al. (2013) | 0.56 | 0.24 | 1.3 ≤ z ≤ 1.5 | Spec | < 41 | Formation time (young) | 10.8 − 11.7 |
McLure et al. (2013) | 0.56 | 0.23 | 1.3 ≤ z ≤ 1.5 | Spec | < 37 | n/Formation time (old) | 10.8 − 11.7 |
McLure et al. (2013) | 0.56 | 0.26 | 1.3 ≤ z ≤ 1.5 | Spec | < 37 | n/Formation time (young) | 10.8 − 11.7 |
Miller et al. (2023)23 | 0.62 ± 0.05 | 0.40 ± 0.01 | 1.0 ≤ z < 1.2 | Phot | 279 | UVJ | 10.3 − 11.4 |
Miller et al. (2023) | 0.57 ± 0.05 | 0.32 ± 0.01 | 1.2 ≤ z < 1.4 | Phot | 252 | UVJ | 10.3 − 11.4 |
Miller et al. (2023) | 0.44 ± 0.07 | 0.30 ± 0.02 | 1.4 ≤ z < 1.6 | Phot | 184 | UVJ | 10.3 − 11.4 |
Miller et al. (2023) | 0.51 ± 0.06 | 0.28 ± 0.02 | 1.6 ≤ z < 1.8 | Phot | 343 | UVJ | 10.3 − 11.4 |
Miller et al. (2023) | 0.55 ± 0.10 | 0.26 ± 0.03 | 1.8 ≤ z ≤ 2.0 | Phot | 205 | UVJ | 10.3 − 11.4 |
Mosleh et al. (2020)24 | 0.680 ± 0.053 | 0.45 ± 0.01 | 0.3 ≤ z < 0.7 | Phot/Spec | ∼303 | UVJ | 10.2 − 11.4 |
Mosleh et al. (2020) | 0.770 ± 0.016 | 0.36 ± 0.01 | 0.7 ≤ z < 1.0 | Phot/Spec | ∼303 | UVJ | 10.6 − 11.4 |
Mosleh et al. (2020) | 0.81 ± 0.14 | 0.320 ± 0.004 | 1.0 ≤ z < 1.3 | Phot/Spec | ∼605 | UVJ | 10.5 − 11.4 |
Mosleh et al. (2020) | 1.08 ± 2.24 | 0.220 ± 0.002 | 1.3 ≤ z ≤ 2.0 | Phot/Spec | ∼152 | UVJ | 10.9 − 11.5 |
Mowla et al. (2019b) | 0.48 ± 0.03 | 0.60 ± 0.02 | 0.0 ≤ z < 0.5 | Phot | < 788 | UVJ | 9 − 12 |
Mowla et al. (2019b) | 0.58 ± 0.04 | 0.47 ± 0.02 | 0.5 ≤ z < 1.0 | Phot | < 788 | UVJ | 9 − 12 |
Mowla et al. (2019b) | 0.73 ± 0.02 | 0.33 ± 0.01 | 1.0 ≤ z < 1.5 | Phot | < 788 | UVJ | 9 − 12 |
Mowla et al. (2019b) | 0.63 ± 0.05 | 0.21 ± 0.02 | 1.5 ≤ z < 2.0 | Phot | < 203 | UVJ | 9 − 12 |
Mowla et al. (2019b) | 0.48 ± 0.12 | 0.06 ± 0.06 | 2.0 ≤ z < 2.5 | Phot | < 203 | UVJ | 9 − 12 |
Mowla et al. (2019b) | 0.59 ± 0.23 | 0.15 ± 0.11 | 2.5 ≤ z ≤ 3.0 | Phot | < 203 | UVJ | 9 − 12 |
Nadolny et al. (2021) | 0.38 ± 0.03 | 0.59 ± 0.05 | 0.0 ≤ z ≤ 2.0 | Phot | 122 | SED | 6.0 − 11.1 |
Nadolny et al. (2021) | 0.37 ± 0.07 | 0.51 ± 0.01 | 0.0 ≤ z < 0.5 | Phot | 37 | SED | 6.0 − 10.8 |
Nadolny et al. (2021) | 0.38 ± 0.06 | 0.50 ± 0.08 | 0.5 ≤ z < 1.0 | Phot | 68 | SED | 8.5 − 11.1 |
Nadolny et al. (2021) | 0.56 ± 0.32 | 0.59 ± 0.36 | 1.0 ≤ z ≤ 2.0 | Phot | 17 | SED | 10 − 10.9 |
Nedkova et al. (2021) | 0.68 ± 0.04 | 0.67 ± 0.01 | 0.2 ≤ z < 0.5 | Phot/Spec | 253 | UVJ | 10.3 − 11.4 |
Nedkova et al. (2021) | 0.64 ± 0.03 | 0.50 ± 0.01 | 0.5 ≤ z < 1.0 | Phot/Spec | 539 | UVJ | 10.3 − 11.7 |
Nedkova et al. (2021) | 0.63 ± 0.04 | 0.32 ± 0.01 | 1.0 ≤ z < 1.5 | Phot/Spec | 430 | UVJ | 10.3 − 11.6 |
Nedkova et al. (2021) | 0.61 ± 0.05 | 0.22 ± 0.01 | 1.5 ≤ z ≤ 2.0 | Phot/Spec | 469 | UVJ | 10.3 − 11.7 |
Newman et al. (2012)25 | 0.59 ± 0.07 | 0.46 ± 0.02 | 0.4 ≤ z < 1.0 | Phot | ∼193 | sSFR/no 24 μm | 10.7 − 11.9 |
Newman et al. (2012) | 0.62 ± 0.09 | 0.30 ± 0.02 | 1.0 ≤ z < 1.5 | Phot | ∼139 | sSFR/no 24 μm | 10.7 − 11.9 |
Newman et al. (2012) | 0.63 ± 0.11 | 0.21 ± 0.02 | 1.5 ≤ z < 2.0 | Phot | ∼108 | sSFR/no 24 μm | 10.7 − 11.7 |
Newman et al. (2012) | 0.69 ± 0.17 | 0.04 ± 0.04 | 2.0 ≤ z ≤ 2.5 | Phot | ∼43 | sSFR/no 24 μm | 10.7 − 11.5 |
Newman et al. (2014)26 | 0.61 ± 0.07 | 0.07 ± 0.06 | 1.7 ≤ z ≤ 1.9 | Phot | ∼200 | UVJ | 10.7 − 11.9 |
Saracco et al. (2009)27 | 1.19 ± 0.47 | 0.47 ± 0.09 | 1.015 ≤ z ≤ 1.921 | Spec | 32 | Spectra | 10 − 12 |
Saracco et al. (2011)28 | 1.10 ± 0.72 | 0.70 ± 0.28 | 0.964 ≤ z ≤ 1.921 | Spec | 62 | Spectra/Morph/n | 9.77 − 11.8 |
Saracco et al. (2014)29 | 1.92 ± 0.99 | 0.91 ± 0.34 | z = 1.27 | Phot/Spec | 16 | Morph | 9.7 − 11.3 |
Saracco et al. (2017)30 | 0.50 ± 0.06 | 0.50 ± 0.07 | 1.0 ≤ z ≤ 1.45 | Phot/Spec | 489 | Morph | 10.5 − 21 |
Shen et al. (2003) | 0.56 | 0.62 | 0.05 ≤ z ≤ 0.15 | Spec | ∼35923 | n | 10 − 12 |
Suess et al. (2019)31 | 0.4077 ± 0.3890 | 0.33 ± 0.25 | 1.0 ≤ z < 1.5 | Phot/Spec | ∼250 | UVJ | 10.5 − 12 |
Suess et al. (2019) | 0.757 ± 0.37 | 0.71 ± 0.49 | 1.5 ≤ z < 2.0 | Phot/Spec | ∼200 | UVJ | 10.5 − 12 |
Suess et al. (2019) | 0.775 ± 1.02 | 0.09 ± 0.11 | 2.0 ≤ z ≤ 2.5 | Phot/Spec | ∼100 | UVJ | 10.5 − 12 |
Sweet et al. (2017)32 | 0.74 ± 0.06 | 0.49 ± 0.04 | z = 1.067 | Phot/Spec | 49 | n | 9.9 − 11.7 |
Sweet et al. (2017) | 0.45 ± 0.04 | 0.53 ± 0.05 | z = 1.067 | Phot/Spec | 48 | n | 10 − 11.9 |
Sweet et al. (2017) | 0.44 ± 0.08 | 0.46 ± 0.05 | z = 1.067 | Phot/Spec | 43 | n | 9.9 − 11.9 |
Sweet et al. (2017) | 0.84 ± 0.06 | 0.48 ± 0.03 | z = 1.067 | Phot/Spec | ∼48 | n | 9.9 − 11.9 |
Sweet et al. (2017) | 1.77 ± 0.21 | 0.15 ± 0.02 | z = 1.067 | Phot/Spec | ∼26 | n | 9.9 − 11.9 |
Toft et al. (2012) | 0.59 | 0.07 | 1.8 ≤ z ≤ 2.2 | Spec | 4 | Post-starburst/SFR | 11 − 11.7 |
van der Wel et al. (2014)33 | 0.75 ± 0.06 | 0.68 ± 0.02 | 0.0 ≤ z < 0.5 | Phot/Spec | ∼500 | UVJ | 9 − 11.3 |
van der Wel et al. (2014) | 0.71 ± 0.03 | 0.49 ± 0.01 | 0.5 ≤ z < 1.0 | Phot/Spec | ∼2540 | UVJ | 9 − 12 |
van der Wel et al. (2014) | 0.76 ± 0.04 | 0.30 ± 0.01 | 1.0 ≤ z < 1.5 | Phot/Spec | ∼1400 | UVJ | 9 − 11.6 |
van der Wel et al. (2014) | 0.76 ± 0.04 | 0.17 ± 0.02 | 1.5 ≤ z < 2.0 | Phot/Spec | ∼1400 | UVJ | 9.3 − 11.8 |
van der Wel et al. (2014) | 0.76 ± 0.04 | 0.03 ± 0.01 | 2.0 ≤ z < 2.5 | Phot/Spec | ∼300 | UVJ | 9.7 − 11.8 |
van der Wel et al. (2014) | 0.79 ± 0.07 | 0.03 ± 0.02 | 2.5 ≤ z ≤ 3.0 | Phot/Spec | ∼650 | UVJ | 10 − 11.3 |
Watkins et al. (2022) | 0.51 | 0.59 | Nearby galaxies | 126 | Morph | 10.7 − 11.5 | |
Williams et al. (2010)34 | 0.54 ± 0.06 | 0.46 ± 0.02 | 0.5 ≤ z < 1.0 | Phot | sSFR | 10.6 − 11.6 | |
Williams et al. (2010) | 0.56 ± 0.06 | 0.35 ± 0.01 | 1.0 ≤ z < 1.5 | Phot | sSFR | 10.6 − 11.6 | |
Williams et al. (2010) | 0.50 ± 0.07 | 0.25 ± 0.01 | 1.5 ≤ z ≤ 2.0 | Phot | sSFR | 10.6 − 11.6 | |
Yang et al. (2021)35 | 0.76 | 0.37 ± 0.11 | 1.0 ≤ z ≤ 1.5 | Phot/Spec | ∼17 | UVJ | 10.3 − 11.2 |
Yoon et al. (2017)36 | 0.621 | 0.66 | 0.1 ≤ z ≤ 0.15 | Spec | ∼55000 | urgi/concentration/Morph | 10.7 − 11.2 |
Yoon et al. (2017) | 0.851 | 0.59 | 0.1 ≤ z ≤ 0.15 | Spec | ∼18000 | urgi/concentration/Morph | 11.3 − 11.9 |
Zanella et al. (2016)37 | 0.62 | 0.34 | 1.05 ≤ z < 1.7 | Spec | 22 | sSFR | 10.7 − 11.8 |
Zanella et al. (2016) | 0.62 | 0.17 | 1.7 ≤ z ≤ 2.05 | Spec | 10 | sSFR | 10.7 − 11.7 |
References. (1) reference, (2) slope, (3) intercept, (4) redshift range, (5) photometric/spectroscopic redshift, (6) number of galaxies (∼ indicates that the number of galaxies was estimated/counted from plots and < indicates that only an upper limit could be found), (7) criteria for quiescent galaxies selection, (8) mass range (in log(M*/M⊙)). The MSR parameters, if estimated by eye, have no uncertainties unless the ±1σ lines were plotted, in which case the uncertainty on log(A) was also estimated by eye.
The slope is fixed and taken from van der Wel et al. (2014). The relations are for cluster and field galaxies, respectively.
ETGs defined as galaxies with SFR < SFRMS − 2σRMS with the MS from Whitaker et al. (2012). The MSRs are estimated by eye.
Quiescent galaxies are defined such as log(SFR) < 0.64 × log(M*) − 7.22 and further reduced using the M* − z plane to match the number of post-starburst galaxies. The MSR is estimated by eye.
Work based on different spectroscopic surveys where the quiescent galaxies selection are either spectroscopically selected objects with old stellar population, morphology or color. The intercept is estimated by eye.
In addition, MSRs at fixed Dn4000 are given (see their Tab. 2) as well as MSRs for newcomers and the aging population (see their Tab. 3).
MSRs with free slope for cluster and field galaxies, respectively. MSRs with fixed slope (α = 0.57) and for each cluster are available (see their Tabs. 7 and 8).
MCDE: Rest-frame stellar mass color diagram corrected for extinction (see Díaz-García et al. 2019a). MSRs for galaxies whose properties were derived using the BC03 simple stellar populations models. MSRs using EMILES (Girardi et al. 2000 Padova00 and Pietrinferni et al. 2004 BaSTI) are available (see their Tab. 3).
The low-mass sample contains 9000 star-forming and quiescent galaxies, and the high-mass samples contains 403 star-forming and quiescent galaxies. The intercept is estimated by eye.
The Shen et al. (2003) slope is used for the two first MSRs, where the Sersic’s size and Sextractor’s size are used for the two other MSRs. For the last MSR, there are 824 ETGs (Sersic index) but no number are given for the morphological separation.
CEN: Central galaxies. The second MSR excludes the bright galaxies (Mr − 5log(h) < −22). The intercept is estimated by eye.
MSR for bulge/spheroid (including LTGs) from different datasets (Savorgnan & Graham 2016; Davis et al. 2019; Sahu et al. 2019; Hon et al. 2022).
The first three MSRs are for field galaxies and the three last for group galaxies. More MSRs with different ETGs selections are available (see their Tab. 1).
MSRs for resolved and resolved+unresvolved galaxies. MSRs using R90 are also available (see their Tab. 1).
MSR for the cluster MACS J1206.2-0847. The parameters are estimated by eye. There are 543 star-forming and quiescent galaxies in the sample.
There are 2010 elliptical galaxies but the sample is cut at 2 × 1010 M⊙ and we take the g-band as it is closer to the i-band at z ∼ 0.7 (see their Appendix B). MSRs for ETGs based on different ETGs selection are shown in their Tab. 3.
The different MSRs correspond to different range of stellar mass (see their Tab. 1 and their conclusions).
The MSR parameters are estimated based on their Table. 3. The relations are for cluster and field galaxies, respectively. The MSR for core ellipticals agrees with cluster elliptical within uncertainties and is not shown here.
There are 1363 quiescent galaxies in the sample. The slope and intercept were retrieved for the high-mass end considering 1+(M*/Mp)≈(M*/Mp), leading to α = β and log(A) = log(rp)-βlog(Mp)+(β − α/δ)log(1/2) (see their Eq. 3). MSRs for R20 and R90 are also available (see their Tab. 1).
The radius is estimated such as Rh=a(1+(b/a))/2. Quiescent galaxies are characterized by sSFR < 0.02 Gyr−1 and no MIPS 24 μm detection.
The MSR is parametrized by the usual linear fit but with an additional dependence on redshift through an additional term (−0.26(z − 1.8)).
MSR for the cluster RDCS J0848+4453. The MSR parameters are estimated based on their Tables 3 and 4.
MSR obtained using a least-square fit with cluster and field galaxies, which is consistent with an orthogonal fit within 1σ. The MSR is better fitted with a broken power-law over the entire mass range with and
below and above 2.5 × 1010 M⊙.
MSR for the cluster SPT-CLJ0546-5345. There is no ETG selection but the median Sersic index is in agreement with ETGs (n = 3.8 ± 0.5).
The sample (LTGs+ETGs) contains 9130 (0 ≤ z ≤ 1), 16639 (1 < z ≤ 2), and 5189 (2 < z ≤ 3) galaxies.
Quiescent galaxies have sSFR < 0.3/tH where tH is the age of the Universe at redshift z. The number of galaxies is not indicated.
The slope is fixed from van der Wel et al. (2014). We choose the MSR derived using the Bradac lens model, which is similar within uncertainties to MSR using other lens models.
ETGs are defined so that c < 0.43, red u − r color, slightly negative Δ(g − i), and refined with a visual classification (see Parker et al. 2005; Choi et al. 2010). There are 73116 ETGs in the sample.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.