Open Access

Table A.1.

MSR parameters of ETGs and properties of the samples used in this work and from the literature.

Reference α log(A) Redshift range z type Ngal Selection Mass range
(1) (2) (3) (4) (5) (6) (7) (8)
This work 0.62 ± 0.04 0.52 ± 0.01 0.5 ≤ z ≤ 0.9 Spec 4786 NUVrK+Dn4000 9.3 − 11.6
0.64 ± 0.01 0.59 ± 0.01 0.50 ≤ z < 0.58 Spec 1197 NUVrK+Dn4000 10.1 − 11.8
0.64 ± 0.04 0.57 ± 0.01 0.58 ≤ z < 0.65 Spec 1196 NUVrK+Dn4000 10.3 − 11.8
0.73 ± 0.02 0.52 ± 0.01 0.65 ≤ z < 0.74 Spec 1198 NUVrK+Dn4000 10.5 − 11.7
0.75 ± 0.03 0.47 ± 0.01 0.74 ≤ z ≤ 0.90 Spec 1195 NUVrK+Dn4000 10.7 − 11.7
HD-MM 0.66 ± 0.07 0.54 ± 0.02 0.5 ≤ z ≤ 0.9 Spec 826 NUVrK+Dn4000 10.1 − 11.7
0.63 ± 0.06 0.61 ± 0.02 0.50 ≤ z < 0.58 Spec 183 NUVrK+Dn4000 10.1 − 11.4
0.65 ± 0.02 0.58 ± 0.01 0.58 ≤ z < 0.65 Spec 182 NUVrK+Dn4000 10.4 − 11.4
0.72 ± 0.09 0.52 ± 0.02 0.65 ≤ z < 0.74 Spec 206 NUVrK+Dn4000 10.5 − 11.5
0.84 ± 0.22 0.50 ± 0.03 0.74 ≤ z ≤ 0.90 Spec 207 NUVrK+Dn4000 10.7 − 11.6
LD-MM 0.62 ± 0.05 0.51 ± 0.01 0.5 ≤ z ≤ 0.9 Spec 826 NUVrK+Dn4000 10.1 − 11.7
0.62 ± 0.05 0.58 ± 0.02 0.50 ≤ z < 0.58 Spec 183 NUVrK+Dn4000 10.1 − 11.4
0.78 ± 0.05 0.57 ± 0.02 0.58 ≤ z < 0.65 Spec 182 NUVrK+Dn4000 10.4 − 11.4
0.76 ± 0.05 0.48 ± 0.02 0.65 ≤ z < 0.74 Spec 206 NUVrK+Dn4000 10.5 − 11.5
0.81 ± 0.05 0.47 ± 0.02 0.74 ≤ z < 0.90 Spec 207 NUVrK+Dn4000 10.7 − 11.5

Allen et al. (2015)1 0.76 ± 0.04 0.41 ± 0.16 2.0 ≤ z ≤ 2.2 Phot 7 UVJ 9.8 − 11.5
Allen et al. (2015) 0.76 ± 0.04 0.34 ± 0.09 2.0 ≤ z ≤ 2.2 Phot 30 UVJ 9.5 − 11.2

Barone et al. (2022)2 0.51 0.64 ± 0.02 0.014 ≤ z ≤ 0.1 Spec 524 MS 10 − 11.5
Barone et al. (2022) 0.64 0.52 ± 0.01 0.6 ≤ z < 0.68 Spec 219 MS 10.5 − 11.5
Barone et al. (2022) 0.77 0.46 ± 0.01 0.68 ≤ z ≤ 0.76 Spec 273 MS 10.5 − 11.5

Belli et al. (2015)3 0.76 0.31 1.0 ≤ z ≤ 1.6 Spec 51 sSFR 10.7 − 11.5

Chan et al. (2016)4 0.138 ± 0.192 0.40 ± 2.55 z = 1.39 Spec 12 sSFR 10 − 11.5
Chan et al. (2016) 0.447 ± 0.268 0.37 ± 7.29 z = 1.39 Spec 12 sSFR 10.5 − 11.5
Chan et al. (2016) 0.359 ± 0.135 0.44 ± 2.41 z = 1.39 Phot/Spec 36 sSFR 10 − 11.5
Chan et al. (2016) 0.576 ± 0.173 0.40 ± 6.58 z = 1.39 Phot/Spec 36 sSFR 10.5 − 11.5

Chen et al. (2022)5 0.69 0.66 0.012 ≤ z ≤ 0.324 Spec 4437 MS/Mz relation 10 − 12

Cimatti et al. (2012)6 0.52 ± 0.05 0.69 0.0 ≤ z < 0.6 Phot/Spec ∼360 Color/Spectra/sSFR/Morph 10.5 − 11.8
Cimatti et al. (2012) 0.47 ± 0.04 0.4 0.6 ≤ z < 0.9 Phot/Spec ∼360 Color/Spectra/sSFR/Morph 10.5 − 11.8
Cimatti et al. (2012) 0.50 ± 0.04 0.27 0.9 ≤ z ≤ 3.0 Phot/Spec ∼360 Color/Spectra/sSFR/Morph 10.5 − 11.6

Damjanov et al. (2011)7 0.47 ± 0.06 0.42 0.2 ≤ z < 0.8 Spec 212 Spectro/Morph/Color 10 − 12
Damjanov et al. (2011) 0.51 ± 0.06 0.41 0.8 ≤ z < 1.4 Spec 199 Spectro/Morph/Color 10 − 12.1
Damjanov et al. (2011) 0.52 ± 0.12 0.21 1.4 ≤ z < 2.0 Spec 44 Spectro/Morph/Color 10 − 11.8
Damjanov et al. (2011) 0.51 ± 0.36 −0.06 2.0 ≤ z ≤ 2.7 Spec 10 Spectro/Morph/Color 10 − 11.2

Damjanov et al. (2019) 0.79 ± 0.05 0.65 ± 0.02 0.16 ≤ z < 0.26 Spec 492 Dn4000 10.2 − 11.6
Damjanov et al. (2019) 0.90 ± 0.04 0.58 ± 0.02 0.26 ≤ z < 0.36 Spec 1527 Dn4000 10.2 − 12.2
Damjanov et al. (2019) 0.87 ± 0.03 0.51 ± 0.01 0.36 ≤ z < 0.48 Spec 840 Dn4000 10.6 − 11.9
Damjanov et al. (2019) 0.70 ± 0.09 0.49 ± 0.03 0.48 ≤ z ≤ 0.65 Spec 487 Dn4000 11 − 12.1

Damjanov et al. (2022) 0.510 ± 0.012 0.76 ± 0.01 0.05 ≤ z ≤ 0.07 Spec 31001 Dn4000 10 − 11.7
Damjanov et al. (2022) 0.643 ± 0.024 0.61 ± 0.01 0.1 ≤ z ≤ 0.6 Spec 2906 Dn4000 9.2 − 12.3

Damjanov et al. (2023)8 0.67 ± 0.01 0.57 ± 0.01 0.2 ≤ z ≤ 0.5 Spec 23113 Dn4000 10 − 12
Damjanov et al. (2023) 0.661 ± 0.009 0.799 ± 0.003 0.2 ≤ z < 0.3 Spec 9205 Dn4000 10.4 − 11.8
Damjanov et al. (2023) 0.749 ± 0.011 0.762 ± 0.020 0.3 ≤ z < 0.4 Spec 7710 Dn4000 10.6 − 11.9
Damjanov et al. (2023) 0.788 ± 0.014 0.720 ± 0.003 0.4 ≤ z < 0.5 Spec 6198 Dn4000 10.6 − 11.9
Damjanov et al. (2023) 0.882 ± 0.029 0.614 ± 0.010 0.5 ≤ z ≤ 0.6 Spec 2949 Dn4000 10.9 − 12

Delaye et al. (2014)9 0.52 ± 0.08 0.52 ± 0.03 0.7 ≤ z < 0.9 Phot/Spec 130 Morph 10.5 − 11.6
Delaye et al. (2014) 0.48 ± 0.08 0.48 ± 0.03 0.9 ≤ z < 1.1 Phot/Spec 96 Morph 10.5 − 11.6
Delaye et al. (2014) 0.34 ± 0.10 0.44 ± 0.04 1.1 ≤ z ≤ 1.6 Phot/Spec 94 Morph 10.5 − 11.6
Delaye et al. (2014) 0.47 ± 0.07 0.47 ± 0.02 0.7 ≤ z < 0.9 Phot/Spec 123 Morph 10.5 − 11.6
Delaye et al. (2014) 0.57 ± 0.07 0.47 ± 0.02 0.9 ≤ z < 1.1 Phot/Spec 135 Morph 10.5 − 11.6
Delaye et al. (2014) 0.5 ± 0.1 0.30 ± 0.02 1.1 ≤ z ≤ 1.6 Phot/Spec 125 Morph 10.5 − 11.6

Díaz-García et al. (2019b)10 0.71 ± 0.02 0.73 ± 0.04 0.1 ≤ z < 0.3 Phot ∼50 MCDE 10.5 − 11.6
Díaz-García et al. (2019b) 0.71 ± 0.02 0.65 ± 0.04 0.3 ≤ z < 0.5 Phot ∼150 MCDE 10.5 − 11.5
Díaz-García et al. (2019b) 0.71 ± 0.02 0.57 ± 0.05 0.5 ≤ z < 0.7 Phot ∼180 MCDE 10.5 − 11.5
Díaz-García et al. (2019b) 0.71 ± 0.02 0.49 ± 0.05 0.7 ≤ z ≤ 0.9 Phot 263 MCDE 10.5 − 11.6

Faisst et al. (2017)11 0.55 ± 0.05 0.5 0.5 ≤ z < 1.0 Phot ∼800 NUVrJ 10 − 12
Faisst et al. (2017) 0.62 ± 0.09 0.3 1.0 ≤ z < 1.5 Phot ∼800 NUVrJ 10 − 11.8
Faisst et al. (2017) 0.59 ± 0.15 0.18 1.5 ≤ z ≤ 2.0 Phot ∼750 NUVrJ 10 − 11.9

Favole et al. (2018)12 0.238 ± 0.044 0.67 ± 0.18 0.2 ≤ z < 0.3 Spec < 75441 De Veaucouleurs profile 11.1 − 12
Favole et al. (2018) 0.219 ± 0.022 0.70 ± 0.11 0.3 ≤ z < 0.43 Spec < 75441 De Veaucouleurs profile 11.1 − 12
Favole et al. (2018) 0.202 ± 0.021 0.73 ± 0.12 0.43 ≤ z < 0.55 Spec < 153304 De Veaucouleurs profile 11 − 12.1
Favole et al. (2018) 0.172 ± 0.015 0.75 ± 0.12 0.55 ≤ z ≤ 0.6 Spec < 153304 De Veaucouleurs profile 11.1 − 12.2

Fernández Lorenzo et al. (2013)13 0.56 0.62 0.01 ≤ z ≤ 0.05 Spec 15 Morph/n 9.9 − 11.4
Fernández Lorenzo et al. (2013) 0.56 0.58 0.01 ≤ z ≤ 0.05 Spec 67 Morph 9.4 − 11.4
Fernández Lorenzo et al. (2013) 0.54 0.54 ± 0.01 0.01 ≤ z ≤ 0.05 Spec 23 Morph/n 10.1 − 11.3
Fernández Lorenzo et al. (2013) 0.60 0.66 ± 0.01 0.01 ≤ z ≤ 0.05 Spec ∼500 Morph/n 9.3 − 11.6

Gargiulo et al. (2017) 0.59 ± 0.07 0.60 ± 0.01 0.5 ≤ z < 0.7 Spec 782 NUVrK 11 − 11.5
Gargiulo et al. (2017) 0.70 ± 0.08 0.53 ± 0.02 0.7 ≤ z < 0.9 Spec 868 NUVrK 11 − 11.5
Gargiulo et al. (2017) 0.52 ± 0.10 0.53 ± 0.02 0.9 ≤ z ≤ 1.0 Spec 372 NUVrK 11 − 11.5

Guo et al. (2009)14 0.91 ± 0.03 0.08 0.0 ≤ z ≤ 0.08 Spec 911 CEN/n 9.9 − 11.7
Guo et al. (2009) 0.70 ± 0.05 0.63 0.0 ≤ z ≤ 0.08 Spec ∼450 CEN/n 9.9 − 11.7

Hamadouche et al. (2022) 0.56 ± 0.04 0.47 ± 0.02 0.6 ≤ z ≤ 0.8 Spec 377 UVJ 10.3 − 11.5
Hamadouche et al. (2022) 0.72 ± 0.06 0.28 ± 0.03 1.0 ≤ z ≤ 1.3 Spec 137 UVJ 10.3 − 11.6


Hon et al. (2023)15 0.88 0.53 D ≤ 110 Mpc 202 Bulge/Spheroid 9.5 − 12
Huertas-Company et al. (2013b)16 0.59 ± 0.09 0.59 ± 0.10 0.2 ≤ z < 0.5 Phot/Spec 59 NUVr 10.5 − 11.4
Huertas-Company et al. (2013b) 0.50 ± 0.11 0.34 ± 0.08 0.5 ≤ z < 0.8 Phot/Spec 123 NUVr 10.5 − 11.7
Huertas-Company et al. (2013b) 0.59 ± 0.05 0.28 ± 0.02 0.8 ≤ z ≤ 1.0 Phot/Spec 210 NUVr 10.5 − 11.8
Huertas-Company et al. (2013b) 0.52 ± 0.03 0.47 ± 0.03 0.2 ≤ z < 0.5 Phot/Spec 128 NUVr 10.5 − 11.9
Huertas-Company et al. (2013b) 0.56 ± 0.04 0.41 ± 0.03 0.5 ≤ z < 0.8 Phot/Spec 110 NUVr 10.5 − 11.7
Huertas-Company et al. (2013b) 0.49 ± 0.04 0.41 ± 0.03 0.8 ≤ z ≤ 1.0 Phot/Spec 155 NUVr 10.5 − 11.9

Ichikawa et al. (2012)17 0.126 ± 0.009 0.54 ± 0.01 0.25 ≤ z ≤ 3.0 Phot/Spec 408 UVJ 8 − 11.5
Ichikawa et al. (2012) 0.129 ± 0.02 0.54 ± 0.03 0.25 ≤ z ≤ 0.5 Phot/Spec 28 UVJ 8 − 11.5
Ichikawa et al. (2012) 0.133 ± 0.018 0.55 ± 0.02 0.5 ≤ z ≤ 0.75 Phot/Spec 70 UVJ 8.2 − 11.5
Ichikawa et al. (2012) 0.118 ± 0.017 0.56 ± 0.01 0.75 ≤ z ≤ 1.0 Phot/Spec 134 UVJ 9 − 11.5
Ichikawa et al. (2012) 0.153 ± 0.024 0.55 ± 0.01 1.0 ≤ z ≤ 1.25 Phot/Spec 83 UVJ 9.5 − 11.5
Ichikawa et al. (2012) 0.125 ± 0.037 0.57 ± 0.02 1.25 ≤ z ≤ 1.5 Phot/Spec 32 UVJ 9.5 − 11.5
Ichikawa et al. (2012) 0.166 ± 0.074 0.52 ± 0.03 1.5 ≤ z ≤ 2.0 Phot/Spec 28 UVJ 10.3 − 11.5
Ichikawa et al. (2012) 0.250 ± 0.083 0.48 ± 0.02 2.0 ≤ z ≤ 2.5 Phot/Spec 27 UVJ 10.3 − 11.5
Ichikawa et al. (2012) 0.48 ± 0.07 0.48 ± 0.02 2.5 ≤ z ≤ 3.0 Phot/Spec 6 UVJ 10.5 − 11.2
Ichikawa et al. (2012) 0.132 ± 0.008 0.54 ± 0.01 0.25 ≤ z ≤ 3.0 Phot/Spec 445 UVJ 8 − 11.5
Ichikawa et al. (2012) 0.165 ± 0.023 0.55 ± 0.03 0.25 ≤ z ≤ 0.50 Phot/Spec 31 UVJ 8 − 11.5
Ichikawa et al. (2012) 0.137 ± 0.017 0.55 ± 0.02 0.50 ≤ z ≤ 0.75 Phot/Spec 73 UVJ 8.2 − 11.5
Ichikawa et al. (2012) 0.119 ± 0.015 0.56 ± 0.01 0.75 ≤ z ≤ 1.0 Phot/Spec 141 UVJ 9 − 11.5
Ichikawa et al. (2012) 0.150 ± 0.022 0.55 ± 0.01 1.0 ≤ z ≤ 1.25 Phot/Spec 88 UVJ 9.5 − 11.5
Ichikawa et al. (2012) 0.152 ± 0.045 0.56 ± 0.02 1.25 ≤ z ≤ 1.5 Phot/Spec 35 UVJ 9.5 − 11.5
Ichikawa et al. (2012) 0.077 ± 0.069 0.48 ± 0.02 1.5 ≤ z ≤ 2.0 Phot/Spec 36 UVJ 10.3 − 11.5
Ichikawa et al. (2012) 0.281 ± 0.068 0.48 ± 0.02 2.0 ≤ z ≤ 2.5 Phot/Spec 32 UVJ 10.3 − 11.5
Ichikawa et al. (2012) 0.251 ± 0.133 0.43 ± 0.04 2.5 ≤ z ≤ 3.0 Phot/Spec 9 UVJ 10.3 − 11.2

Kawinwanichakij et al. (2021) 0.34 ± 0.01 0.55 0.2 ≤ z < 0.4 Phot 40259 urz 8.5 − 11.8
Kawinwanichakij et al. (2021) 0.36 ± 0.01 0.53 0.4 ≤ z < 0.6 Phot 82714 urz 8.5 − 12
Kawinwanichakij et al. (2021) 0.41 ± 0.01 0.47 0.6 ≤ z < 0.8 Phot 61486 urz 8.5 − 12
Kawinwanichakij et al. (2021) 0.44 ± 0.01 0.42 0.8 ≤ z ≤ 1.0 Phot 57059 urz 8.8 − 12.1

Krogager et al. (2014) 0.82 ± 0.22 0.30 ± 0.08 1.85 ≤ z ≤ 2.3 Phot/Spec 34 UVJ 10.6 − 11.7
Krogager et al. (2014) 0.53 ± 0.29 0.29 ± 0.07 1.85 ≤ z ≤ 2.3 Spec 14 UVJ 10.8 − 11.7

Kuchner et al. (2017)18 0.43 0.55 z = 0.44 Spec ∼293 BRI 9.2 − 11.3

Lani et al. (2013) 0.31 0.45 0.5 ≤ z < 1.0 Phot ∼2900 UVJ/sSFR 9.8 − 12.2
Lani et al. (2013) 0.44 0.3 1.0 ≤ z ≤ 2.0 Phot ∼2200 UVJ/sSFR 10.4 − 11.9

Lange et al. (2015)19 0.63 ± 0.03 0.580 ± 0.003 0.01 ≤ z ≤ 0.1 Spec 1300 Morph 10.3 − 11.3

Lange et al. (2016)20 0.329 ± 0.010 0.51 ± 0.01 0.002 ≤ z ≤ 0.06 Spec 806 Morph 8 − 11.2
Lange et al. (2016) 0.643 ± 0.032 0.64 ± 0.09 0.002 ≤ z ≤ 0.06 Spec ∼400 Morph 10 − 11.2
Lange et al. (2016) 0.786 ± 0.048 0.64 ± 56.99 0.002 ≤ z ≤ 0.06 Spec ∼400 Morph 10.3 − 11.2

Maltby et al. (2010)21 0.26 ± 0.07 0.47 ± 0.06 0.122 ≤ z ≤ 0.205 Phot 167 Hubble type 9 − 11.5
Maltby et al. (2010) 0.30 ± 0.04 0.55 ± 0.04 0.05 ≤ z ≤ 0.3 Phot 89 Hubble type 9 − 11.5

McLure et al. (2013)22 0.56 0.23 1.3 ≤ z ≤ 1.5 Spec 41 sSFR 10.8 − 11.7
McLure et al. (2013) 0.56 0.24 1.3 ≤ z ≤ 1.5 Spec 37 n 10.8 − 11.7
McLure et al. (2013) 0.56 0.24 1.3 ≤ z ≤ 1.5 Spec < 41 Formation time (old) 10.8 − 11.7
McLure et al. (2013) 0.56 0.24 1.3 ≤ z ≤ 1.5 Spec < 41 Formation time (young) 10.8 − 11.7
McLure et al. (2013) 0.56 0.23 1.3 ≤ z ≤ 1.5 Spec < 37 n/Formation time (old) 10.8 − 11.7
McLure et al. (2013) 0.56 0.26 1.3 ≤ z ≤ 1.5 Spec < 37 n/Formation time (young) 10.8 − 11.7

Miller et al. (2023)23 0.62 ± 0.05 0.40 ± 0.01 1.0 ≤ z < 1.2 Phot 279 UVJ 10.3 − 11.4
Miller et al. (2023) 0.57 ± 0.05 0.32 ± 0.01 1.2 ≤ z < 1.4 Phot 252 UVJ 10.3 − 11.4
Miller et al. (2023) 0.44 ± 0.07 0.30 ± 0.02 1.4 ≤ z < 1.6 Phot 184 UVJ 10.3 − 11.4
Miller et al. (2023) 0.51 ± 0.06 0.28 ± 0.02 1.6 ≤ z < 1.8 Phot 343 UVJ 10.3 − 11.4
Miller et al. (2023) 0.55 ± 0.10 0.26 ± 0.03 1.8 ≤ z ≤ 2.0 Phot 205 UVJ 10.3 − 11.4

Mosleh et al. (2020)24 0.680 ± 0.053 0.45 ± 0.01 0.3 ≤ z < 0.7 Phot/Spec ∼303 UVJ 10.2 − 11.4
Mosleh et al. (2020) 0.770 ± 0.016 0.36 ± 0.01 0.7 ≤ z < 1.0 Phot/Spec ∼303 UVJ 10.6 − 11.4
Mosleh et al. (2020) 0.81 ± 0.14 0.320 ± 0.004 1.0 ≤ z < 1.3 Phot/Spec ∼605 UVJ 10.5 − 11.4
Mosleh et al. (2020) 1.08 ± 2.24 0.220 ± 0.002 1.3 ≤ z ≤ 2.0 Phot/Spec ∼152 UVJ 10.9 − 11.5

Mowla et al. (2019b) 0.48 ± 0.03 0.60 ± 0.02 0.0 ≤ z < 0.5 Phot < 788 UVJ 9 − 12
Mowla et al. (2019b) 0.58 ± 0.04 0.47 ± 0.02 0.5 ≤ z < 1.0 Phot < 788 UVJ 9 − 12
Mowla et al. (2019b) 0.73 ± 0.02 0.33 ± 0.01 1.0 ≤ z < 1.5 Phot < 788 UVJ 9 − 12
Mowla et al. (2019b) 0.63 ± 0.05 0.21 ± 0.02 1.5 ≤ z < 2.0 Phot < 203 UVJ 9 − 12
Mowla et al. (2019b) 0.48 ± 0.12 0.06 ± 0.06 2.0 ≤ z < 2.5 Phot < 203 UVJ 9 − 12
Mowla et al. (2019b) 0.59 ± 0.23 0.15 ± 0.11 2.5 ≤ z ≤ 3.0 Phot < 203 UVJ 9 − 12

Nadolny et al. (2021) 0.38 ± 0.03 0.59 ± 0.05 0.0 ≤ z ≤ 2.0 Phot 122 SED 6.0 − 11.1
Nadolny et al. (2021) 0.37 ± 0.07 0.51 ± 0.01 0.0 ≤ z < 0.5 Phot 37 SED 6.0 − 10.8
Nadolny et al. (2021) 0.38 ± 0.06 0.50 ± 0.08 0.5 ≤ z < 1.0 Phot 68 SED 8.5 − 11.1
Nadolny et al. (2021) 0.56 ± 0.32 0.59 ± 0.36 1.0 ≤ z ≤ 2.0 Phot 17 SED 10 − 10.9

Nedkova et al. (2021) 0.68 ± 0.04 0.67 ± 0.01 0.2 ≤ z < 0.5 Phot/Spec 253 UVJ 10.3 − 11.4
Nedkova et al. (2021) 0.64 ± 0.03 0.50 ± 0.01 0.5 ≤ z < 1.0 Phot/Spec 539 UVJ 10.3 − 11.7
Nedkova et al. (2021) 0.63 ± 0.04 0.32 ± 0.01 1.0 ≤ z < 1.5 Phot/Spec 430 UVJ 10.3 − 11.6
Nedkova et al. (2021) 0.61 ± 0.05 0.22 ± 0.01 1.5 ≤ z ≤ 2.0 Phot/Spec 469 UVJ 10.3 − 11.7

Newman et al. (2012)25 0.59 ± 0.07 0.46 ± 0.02 0.4 ≤ z < 1.0 Phot ∼193 sSFR/no 24 μm 10.7 − 11.9
Newman et al. (2012) 0.62 ± 0.09 0.30 ± 0.02 1.0 ≤ z < 1.5 Phot ∼139 sSFR/no 24 μm 10.7 − 11.9
Newman et al. (2012) 0.63 ± 0.11 0.21 ± 0.02 1.5 ≤ z < 2.0 Phot ∼108 sSFR/no 24 μm 10.7 − 11.7
Newman et al. (2012) 0.69 ± 0.17 0.04 ± 0.04 2.0 ≤ z ≤ 2.5 Phot ∼43 sSFR/no 24 μm 10.7 − 11.5

Newman et al. (2014)26 0.61 ± 0.07 0.07 ± 0.06 1.7 ≤ z ≤ 1.9 Phot ∼200 UVJ 10.7 − 11.9

Saracco et al. (2009)27 1.19 ± 0.47 0.47 ± 0.09 1.015 ≤ z ≤ 1.921 Spec 32 Spectra 10 − 12

Saracco et al. (2011)28 1.10 ± 0.72 0.70 ± 0.28 0.964 ≤ z ≤ 1.921 Spec 62 Spectra/Morph/n 9.77 − 11.8

Saracco et al. (2014)29 1.92 ± 0.99 0.91 ± 0.34 z = 1.27 Phot/Spec 16 Morph 9.7 − 11.3

Saracco et al. (2017)30 0.50 ± 0.06 0.50 ± 0.07 1.0 ≤ z ≤ 1.45 Phot/Spec 489 Morph 10.5 − 21

Shen et al. (2003) 0.56 0.62 0.05 ≤ z ≤ 0.15 Spec ∼35923 n 10 − 12

Suess et al. (2019)31 0.4077 ± 0.3890 0.33 ± 0.25 1.0 ≤ z < 1.5 Phot/Spec ∼250 UVJ 10.5 − 12
Suess et al. (2019) 0.757 ± 0.37 0.71 ± 0.49 1.5 ≤ z < 2.0 Phot/Spec ∼200 UVJ 10.5 − 12
Suess et al. (2019) 0.775 ± 1.02 0.09 ± 0.11 2.0 ≤ z ≤ 2.5 Phot/Spec ∼100 UVJ 10.5 − 12

Sweet et al. (2017)32 0.74 ± 0.06 0.49 ± 0.04 z = 1.067 Phot/Spec 49 n 9.9 − 11.7
Sweet et al. (2017) 0.45 ± 0.04 0.53 ± 0.05 z = 1.067 Phot/Spec 48 n 10 − 11.9
Sweet et al. (2017) 0.44 ± 0.08 0.46 ± 0.05 z = 1.067 Phot/Spec 43 n 9.9 − 11.9
Sweet et al. (2017) 0.84 ± 0.06 0.48 ± 0.03 z = 1.067 Phot/Spec ∼48 n 9.9 − 11.9
Sweet et al. (2017) 1.77 ± 0.21 0.15 ± 0.02 z = 1.067 Phot/Spec ∼26 n 9.9 − 11.9

Toft et al. (2012) 0.59 0.07 1.8 ≤ z ≤ 2.2 Spec 4 Post-starburst/SFR 11 − 11.7

van der Wel et al. (2014)33 0.75 ± 0.06 0.68 ± 0.02 0.0 ≤ z < 0.5 Phot/Spec ∼500 UVJ 9 − 11.3
van der Wel et al. (2014) 0.71 ± 0.03 0.49 ± 0.01 0.5 ≤ z < 1.0 Phot/Spec ∼2540 UVJ 9 − 12
van der Wel et al. (2014) 0.76 ± 0.04 0.30 ± 0.01 1.0 ≤ z < 1.5 Phot/Spec ∼1400 UVJ 9 − 11.6
van der Wel et al. (2014) 0.76 ± 0.04 0.17 ± 0.02 1.5 ≤ z < 2.0 Phot/Spec ∼1400 UVJ 9.3 − 11.8
van der Wel et al. (2014) 0.76 ± 0.04 0.03 ± 0.01 2.0 ≤ z < 2.5 Phot/Spec ∼300 UVJ 9.7 − 11.8
van der Wel et al. (2014) 0.79 ± 0.07 0.03 ± 0.02 2.5 ≤ z ≤ 3.0 Phot/Spec ∼650 UVJ 10 − 11.3

Watkins et al. (2022) 0.51 0.59 Nearby galaxies 126 Morph 10.7 − 11.5

Williams et al. (2010)34 0.54 ± 0.06 0.46 ± 0.02 0.5 ≤ z < 1.0 Phot sSFR 10.6 − 11.6
Williams et al. (2010) 0.56 ± 0.06 0.35 ± 0.01 1.0 ≤ z < 1.5 Phot sSFR 10.6 − 11.6
Williams et al. (2010) 0.50 ± 0.07 0.25 ± 0.01 1.5 ≤ z ≤ 2.0 Phot sSFR 10.6 − 11.6

Yang et al. (2021)35 0.76 0.37 ± 0.11 1.0 ≤ z ≤ 1.5 Phot/Spec ∼17 UVJ 10.3 − 11.2

Yoon et al. (2017)36 0.621 0.66 0.1 ≤ z ≤ 0.15 Spec ∼55000 urgi/concentration/Morph 10.7 − 11.2
Yoon et al. (2017) 0.851 0.59 0.1 ≤ z ≤ 0.15 Spec ∼18000 urgi/concentration/Morph 11.3 − 11.9

Zanella et al. (2016)37 0.62 0.34 1.05 ≤ z < 1.7 Spec 22 sSFR 10.7 − 11.8
Zanella et al. (2016) 0.62 0.17 1.7 ≤ z ≤ 2.05 Spec 10 sSFR 10.7 − 11.7

References. (1) reference, (2) slope, (3) intercept, (4) redshift range, (5) photometric/spectroscopic redshift, (6) number of galaxies (∼ indicates that the number of galaxies was estimated/counted from plots and < indicates that only an upper limit could be found), (7) criteria for quiescent galaxies selection, (8) mass range (in log(M*/M)). The MSR parameters, if estimated by eye, have no uncertainties unless the ±1σ lines were plotted, in which case the uncertainty on log(A) was also estimated by eye.

1

The slope is fixed and taken from van der Wel et al. (2014). The relations are for cluster and field galaxies, respectively.

2

ETGs defined as galaxies with SFR < SFRMS − 2σRMS with the MS from Whitaker et al. (2012). The MSRs are estimated by eye.

3

The MSR is estimated by eye.

4

MSR for the cluster XMMUJ2235-2557. MSRs using rmass are also available (see their Tab. 2).

5

Quiescent galaxies are defined such as log(SFR) < 0.64 × log(M*) − 7.22 and further reduced using the M* − z plane to match the number of post-starburst galaxies. The MSR is estimated by eye.

6

The sample is taken from different works (see their Tab. 1). The intercept is estimated by eye.

7

Work based on different spectroscopic surveys where the quiescent galaxies selection are either spectroscopically selected objects with old stellar population, morphology or color. The intercept is estimated by eye.

8

In addition, MSRs at fixed Dn4000 are given (see their Tab. 2) as well as MSRs for newcomers and the aging population (see their Tab. 3).

9

MSRs with free slope for cluster and field galaxies, respectively. MSRs with fixed slope (α = 0.57) and for each cluster are available (see their Tabs. 7 and 8).

10

MCDE: Rest-frame stellar mass color diagram corrected for extinction (see Díaz-García et al. 2019a). MSRs for galaxies whose properties were derived using the BC03 simple stellar populations models. MSRs using EMILES (Girardi et al. 2000 Padova00 and Pietrinferni et al. 2004 BaSTI) are available (see their Tab. 3).

11

The low-mass sample contains 9000 star-forming and quiescent galaxies, and the high-mass samples contains 403 star-forming and quiescent galaxies. The intercept is estimated by eye.

12

The number of red galaxies per redshift range is not indicated.

13

The Shen et al. (2003) slope is used for the two first MSRs, where the Sersic’s size and Sextractor’s size are used for the two other MSRs. For the last MSR, there are 824 ETGs (Sersic index) but no number are given for the morphological separation.

14

CEN: Central galaxies. The second MSR excludes the bright galaxies (Mr − 5log(h) < −22). The intercept is estimated by eye.

15

MSR for bulge/spheroid (including LTGs) from different datasets (Savorgnan & Graham 2016; Davis et al. 2019; Sahu et al. 2019; Hon et al. 2022).

16

The first three MSRs are for field galaxies and the three last for group galaxies. More MSRs with different ETGs selections are available (see their Tab. 1).

17

MSRs for resolved and resolved+unresvolved galaxies. MSRs using R90 are also available (see their Tab. 1).

18

MSR for the cluster MACS J1206.2-0847. The parameters are estimated by eye. There are 543 star-forming and quiescent galaxies in the sample.

19

There are 2010 elliptical galaxies but the sample is cut at 2 × 1010 M and we take the g-band as it is closer to the i-band at z ∼ 0.7 (see their Appendix B). MSRs for ETGs based on different ETGs selection are shown in their Tab. 3.

20

The different MSRs correspond to different range of stellar mass (see their Tab. 1 and their conclusions).

21

The MSR parameters are estimated based on their Table. 3. The relations are for cluster and field galaxies, respectively. The MSR for core ellipticals agrees with cluster elliptical within uncertainties and is not shown here.

22

The formation time is derived using SED fitting.

23

MSRs using rmass are available (see their Tab. 2).

24

There are 1363 quiescent galaxies in the sample. The slope and intercept were retrieved for the high-mass end considering 1+(M*/Mp)≈(M*/Mp), leading to α = β and log(A) = log(rp)-βlog(Mp)+(β − α/δ)log(1/2) (see their Eq. 3). MSRs for R20 and R90 are also available (see their Tab. 1).

25

The radius is estimated such as Rh=a(1+(b/a))/2. Quiescent galaxies are characterized by sSFR < 0.02 Gyr−1 and no MIPS 24 μm detection.

26

The MSR is parametrized by the usual linear fit but with an additional dependence on redshift through an additional term (−0.26(z − 1.8)).

27

The MSR parameters are estimated based on their Table 2.

28

The MSR parameters are estimated based on their Table 1.

29

MSR for the cluster RDCS J0848+4453. The MSR parameters are estimated based on their Tables 3 and 4.

30

MSR obtained using a least-square fit with cluster and field galaxies, which is consistent with an orthogonal fit within 1σ. The MSR is better fitted with a broken power-law over the entire mass range with R e = 26 × M 0.13 ± 0.2 $ R_{\mathrm{e}}=26\times M_{*}^{-0.13\pm 0.2} $ and R e = 2.77 × 10 7 M 0.64 ± 0.09 $ R_{\mathrm{e}}=2.77\times 10^{-7} M_{*}^{-0.64\pm 0.09} $ below and above 2.5 × 1010 M.

31

The MSR is obtained by combining log(rmass/rlight)∝log(M*) and log(rmass/rlight)∝log(rlight).

32

MSR for the cluster SPT-CLJ0546-5345. There is no ETG selection but the median Sersic index is in agreement with ETGs (n = 3.8 ± 0.5).

33

The sample (LTGs+ETGs) contains 9130 (0 ≤ z ≤ 1), 16639 (1 < z ≤ 2), and 5189 (2 < z ≤ 3) galaxies.

34

Quiescent galaxies have sSFR < 0.3/tH where tH is the age of the Universe at redshift z. The number of galaxies is not indicated.

35

The slope is fixed from van der Wel et al. (2014). We choose the MSR derived using the Bradac lens model, which is similar within uncertainties to MSR using other lens models.

36

ETGs are defined so that c < 0.43, red u − r color, slightly negative Δ(g − i), and refined with a visual classification (see Parker et al. 2005; Choi et al. 2010). There are 73116 ETGs in the sample.

37

The MSR is estimated by eye.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.