Open Access

Table 1.

Cosmic Web properties for 50 out of 260 BORG SDSS–constrained giants, sorted by right ascension.

Rank Host coordinates Spectroscopic Cosmic Web Cosmic Web Cosmic Web T-web Cluster mass Host
equatorial J2000 (° ) redshift zs (1) density fixed density flexible probabilities p (1) M500 (1014M) BCG
voxel μ, σ2 (1) voxel μ, σ2 (1)
1 111.57678,  38.63317 0.15387 ± 3 × 10−5 −0.49, 0.60 0.60, 0.45 (0.0, 0.2, 0.7, 0.1)
2 113.77185,  41.97432 0.08732 ± 2 × 10−5 1.94, 0.06 2.43, 0.03 (0.1, 0.9, 0.0, 0.0)
3 114.98866,  43.98326 0.14887 ± 2 × 10−5 −0.73, 0.52 0.42, 0.42 (0.0, 0.2, 0.6, 0.2)
4 115.96358,  28.35779 0.10633 ± 2 × 10−5 0.88, 0.53 1.87, 0.20 (0.1, 0.7, 0.2, 0.0)
5 116.03381,  43.99169 0.13484 ± 2 × 10−5 0.95, 0.23 2.41, 0.05 (0.0, 0.9, 0.1, 0.0)
6 117.53962,  26.73550 0.13042 ± 2 × 10−5 1.59, 0.17 2.16, 0.06 (0.2, 0.8, 0.0, 0.0)
7 118.14466,  35.83983 0.13650 ± 3 × 10−5 0.95, 0.25 2.09, 0.10 (0.0, 0.8, 0.2, 0.0)
8 119.15943,  32.46314 0.14620 ± 2 × 10−5 0.47, 0.50 1.28, 0.23 (0.1, 0.5, 0.4, 0.0)
9 119.26227,  36.62242 0.13948 ± 3 × 10−5 −0.02, 0.42 0.94, 0.22 (0.0, 0.2, 0.8, 0.0)
10 119.27937,  35.97967 0.13296 ± 2 × 10−5 1.15, 0.28 2.08, 0.07 (0.1, 0.8, 0.1, 0.0) 1.3 y
11 119.47158,  36.67279 0.12844 ± 2 × 10−5 1.26, 0.15 1.66, 0.08 (0.1, 0.8, 0.1, 0.0) 0.8 y
12 120.25565,  13.83117 0.10872 ± 2 × 10−5 2.46, 0.03 2.58, 0.02 (0.7, 0.3, 0.0, 0.0) 3.2 y
13 120.30535,  34.67522 0.08269 ± 2 × 10−5 1.56, 0.08 1.93, 0.04 (0.2, 0.8, 0.0, 0.0)
14 120.38318,  47.60446 0.15684 ± 3 × 10−5 −0.30, 0.56 1.14, 0.32 (0.0, 0.4, 0.6, 0.0)
15 120.80515,  51.93263 0.06947 ± 2 × 10−5 2.00, 0.04 2.21, 0.03 (0.3, 0.7, 0.0, 0.0)
16 121.01419,  40.80261 0.12617 ± 1 × 10−5 0.85, 0.20 1.59, 0.11 (0.1, 0.8, 0.1, 0.0) 2.5 y
17 121.32789,  28.62417 0.14256 ± 2 × 10−5 1.18, 0.39 1.78, 0.17 (0.1, 0.6, 0.3, 0.0)
18 121.38042,  25.80317 0.13698 ± 2 × 10−5 1.02, 0.31 1.89, 0.09 (0.0, 0.8, 0.2, 0.0)
19 121.42954,  16.23223 0.10002 ± 2 × 10−5 2.46, 0.03 2.67, 0.02 (0.6, 0.4, 0.0, 0.0) 0.9 y
20 122.14848,  38.91450 0.04081 ± 1 × 10−5 1.79, 0.04 2.26, 0.02 (0.1, 0.9, 0.0, 0.0)
21 122.28630,  29.67904 0.12572 ± 2 × 10−5 1.18, 0.18 2.03, 0.06 (0.1, 0.8, 0.1, 0.0)
22 122.31280,  41.28897 0.13344 ± 3 × 10−5 0.86, 0.38 1.48, 0.14 (0.2, 0.6, 0.2, 0.0)
23 123.41209,  41.36503 0.09984 ± 2 × 10−5 1.05, 0.15 2.27, 0.04 (0.0, 0.7, 0.3, 0.0) 0.8 y
24 123.91600,  50.54063 0.13803 ± 3 × 10−5 1.16, 0.29 1.85, 0.08 (0.2, 0.6, 0.2, 0.0)
25 124.44458,  54.70087 0.11867 ± 2 × 10−5 2.22, 0.07 2.63, 0.03 (0.2, 0.8, 0.0, 0.0) 4.9 n
26 125.78050,  10.59828 0.06605 ± 1 × 10−4 0.95, 0.14 1.53, 0.05 (0.2, 0.6, 0.2, 0.0)
27 126.47417,  41.60254 0.15359 ± 2 × 10−5 1.38, 0.38 2.03, 0.15 (0.2, 0.7, 0.1, 0.0)
28 127.86456,  32.32412 0.05120 ± 1 × 10−5 0.69, 0.12 1.78, 0.04 (0.0, 1.0, 0.0, 0.0)
29 127.99873,  30.65853 0.10704 ± 2 × 10−5 1.80, 0.08 2.07, 0.04 (0.4, 0.6, 0.0, 0.0)
30 128.14208,  4.41000 0.10600 ± 1 × 10−5 0.47, 0.24 1.34, 0.10 (0.0, 0.3, 0.7, 0.0)
31 129.03256,  26.81206 0.08780 ± 2 × 10−5 1.22, 0.12 1.91, 0.04 (0.1, 0.7, 0.2, 0.0)
32 130.18516,  58.69709 0.14392 ± 3 × 10−5 0.15, 0.40 1.21, 0.19 (0.0, 0.4, 0.6, 0.0) 1.2 y
33 130.50142,  38.93753 0.11977 ± 2 × 10−5 1.82, 0.09 2.23, 0.04 (0.2, 0.8, 0.0, 0.0) 0.9 n
34 130.53983,  41.94039 0.12565 ± 2 × 10−5 0.67, 0.31 1.93, 0.08 (0.0, 0.8, 0.2, 0.0)
35 131.24330,  42.07739 0.14932 ± 2 × 10−5 1.57, 0.30 2.40, 0.08 (0.1, 0.8, 0.1, 0.0)
36 131.36289,  44.92399 0.15062 ± 3 × 10−5 1.70, 0.27 2.19, 0.10 (0.3, 0.6, 0.1, 0.0) 0.8 n
37 132.73665,  42.80464 0.09238 ± 1 × 10−5 1.05, 0.17 1.68, 0.05 (0.2, 0.8, 0.0, 0.0) 1.3 y
38 133.45742,  14.87390 0.06933 ± 2 × 10−5 2.00, 0.04 2.24, 0.02 (0.8, 0.2, 0.0, 0.0) 0.7 y
39 133.80972,  49.19334 0.11773 ± 1 × 10−5 0.99, 0.36 2.14, 0.09 (0.0, 0.8, 0.2, 0.0)
40 134.23524,  47.95594 0.14927 ± 2 × 10−5 1.20, 0.44 2.00, 0.17 (0.1, 0.7, 0.2, 0.0)
41 134.58152,  46.37086 0.11711 ± 1 × 10−5 1.19, 0.24 1.54, 0.11 (0.2, 0.6, 0.2, 0.0)
42 135.36742,  55.04455 0.04602 2.15, 0.03 2.35, 0.01 (0.4, 0.6, 0.0, 0.0)
43 135.45964,  55.92429 0.14090 ± 2 × 10−5 1.60, 0.21 2.06, 0.09 (0.4, 0.6, 0.0, 0.0)
44 136.09149,  19.72455 0.09953 ± 2 × 10−5 1.30, 0.10 1.72, 0.06 (0.1, 0.9, 0.0, 0.0)
45 137.13529,  18.28034 0.11554 ± 3 × 10−5 1.17, 0.17 1.96, 0.06 (0.1, 0.8, 0.1, 0.0)
46 137.23745,  58.38413 0.14364 ± 3 × 10−5 0.17, 0.52 1.33, 0.20 (0.0, 0.6, 0.4, 0.0)
47 137.87830,  48.54753 0.10865 ± 2 × 10−5 0.32, 0.30 1.45, 0.09 (0.0, 0.6, 0.4, 0.0)
48 139.74751,  31.86128 0.06194 ± 1 × 10−5 1.65, 0.08 1.78, 0.04 (0.6, 0.4, 0.0, 0.0)
49 139.95191,  57.84889 0.13695 ± 3 × 10−5 1.21, 0.17 1.67, 0.09 (0.1, 0.8, 0.1, 0.0) 0.8 n
50 140.34212,  54.86499 0.04469 ± 1 × 10−5 1.90, 0.02 2.31, 0.02 (0.0, 0.6, 0.4, 0.0)

Notes. We provide MLE parameters of lognormal fits to total matter (i.e., both baryonic and dark matter) relative density distributions. We report parameters for both the fixed and flexible voxel methods. Densities span the BORG SDSS comoving voxel volume of (2.9 Mpc h−1)3 and are relative to today’s cosmic mean total matter density. The mean and variance of a density distribution are E [ 1 + Δ GRG , obs | 1 + Δ GRG = 1 + δ i ] = exp ( μ + 1 2 σ 2 ) $ \mathbb{E}[1+\Delta_{\mathrm{GRG,obs}}\ \vert\ 1+\Delta_{\mathrm{GRG}} = 1 + \delta_i] = \exp{(\mu + \frac{1}{2}\sigma^2)} $ and 𝕍[1 + ΔGRG, obs | 1 + ΔGRG = 1 + δi]=(exp(σ2) − 1)exp(2μ + σ2). The components of the T-web probability vector p = (p1, p2, p3, p4) correspond to clusters, filaments, sheets, and voids, respectively. Cluster masses stem from crossmatching with Wen & Han (2015). We share a full table (with all 260 entries), alongside an analogous table for our 1443 selected LoTSS DR1 RGs, via the CDS.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.