Issue |
A&A
Volume 683, March 2024
|
|
---|---|---|
Article Number | C4 | |
Number of page(s) | 3 | |
Section | Letters to the Editor | |
DOI | https://doi.org/10.1051/0004-6361/202346365e | |
Published online | 13 March 2024 |
Letter to the Editor
The two rings of (50000) Quaoar (Corrigendum)
1
Observatório Nacional/MCTI, R. General José Cristino 77, CEP 20921-400 Rio de Janeiro, RJ, Brazil
e-mail: chrystianpereira@on.br
2
Laboratório Interinstitucional de e-Astronomia – LIneA, Rio de Janeiro, RJ, Brazil
3
LESIA, Observatoire de Paris, Université PSL, Sorbonne Université, Université de Paris, CNRS, 92190 Meudon, France
4
Universidade Federal do Rio de Janeiro – Observatório do Valongo, Ladeira Pedro Antônio 43, CEP 20.080-090 Rio de Janeiro, RJ, Brazil
5
Federal University of Technology – Paraná (UTFPR-Curitiba), Rua Sete de Setembro, 3165, CEP 80230-901 Curitiba, PR, Brazil
6
Florida Space Institute, UCF, 12354 Research Parkway, Partnership 1 building, Room 211, Orlado, USA
7
Instituto de Astrofísica de Andalucía – Consejo Superior de Investigaciones Científicas, Glorieta de la Astronomía s/n, 18008 Granada, Spain
8
Departments of Astronomy, and of Earth and Planetary Science, 501, Campbell Hall, University of California, Berkeley, CA 94720, USA
9
naXys, Department of Mathematics, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
10
Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, Bd de l’Observatoire, CS 34229, 06304 Nice Cedex 4, France
11
Space Telescope Science Institute, Baltimore, Maryland, USA
12
Aix Marseille Université, CNRS, CNES, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, 13388 Marseille, France
13
Canada-France-Hawaii Telescope, 65-1238 Mamalahoa Highway, Kamuela, HI 96743, USA
14
Institut Polytechnique des Sciences Avancées IPSA, 63 boulevard de Brandebourg, 94200 Ivry-sur-Seine, France
15
Institut de Mécanique Céleste et de Calcul des Éphémérides, IMCCE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Lille, France
16
Akdeniz University, Faculty of Sciences, Department of Space Sciences and Technologies, 07058 Antalya, Turkey
17
TÜBİTAK National Observatory, Akdeniz University Campus, 07058 Antalya, Turkey
18
Institute of Physics, Federal University of Uberlândia, Uberlândia-MG, Brazil
19
UNESP – São Paulo State University, Grupo de Dinâmica Orbital e Planetologia, CEP 12516-410 Guaratinguetá, SP, Brazil
20
Universidade Estadual de Ponta Grossa, O.A. – DEGEO, Ponta Grossa (PR), Brazil
21
Internationale Amateursternwarte (IAS) e. V., Mittelstr. 6, 15749 Mittenwalde, Germany
22
International Occultation Timing Association – European Section (IOTA/ES), Am Brombeerhag 13, 30459 Hannover, Germany
23
Département de Physique and Observatoire du Mont-Mégantic, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, H3C 3J7 Québec, Canada
24
Institut Trottier de Recherche sur les exoplanètes, Université de Montréal, Canada
25
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
26
Gemini Observatory/NSF’s NOIRLab, Hilo, Hawaii, USA
27
Cabrillo College Astronomy, Aptos, CA, USA
28
Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302, USA
29
International Occultation Timing Association (IOTA), Topeka, KS, USA
30
California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA
31
Universidad Nacional Autónoma de México, Instituto de Astronomía, AP 106, Ensenada, 22800 BC, Mexico
32
University of Oregon, Eugene, OR, USA
33
CanCON – Canadian Collaborative Occultation Network, Canada
34
NASA Ames Research Center, Moffett Field, California, USA & NASA Exoplanet Science Institute, Caltech/IPAC, Mail Code 100-22, Pasadena, CA, USA
35
University of New Haven, Dept. of Mathematics and Physics, 300 Boston Post Road, West Haven, CT 06477, USA
36
Academia Sinica Institute of Astronomy and Astrophysics, 11F of AS/NTU Astronomy-Mathematics Building, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
37
University of Colorado, 2000 Colorado Avenue, Boulder, CO 80309, USA
38
Planetary Plasma and Atmospheric Research Center, Graduate School of Science, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
39
Department of Physics and Astronomy, University of Victoria, Building, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
40
Unistellar, 5 allée Marcel Leclerc, bâtiment B, 13008 Marseille, France
41
SETI Institute, Carl Sagan Center, Suite 200, 339 Bernardo Avenue, Mountain View, CA 94043, USA
42
Astronomy Department and Van Vleck Observatory, Wesleyan University, Middletown, CT 06459, USA
43
Research and Education Collaborative Occultation Network, USA
44
Purdue University Northwest, Department of Chemistry and Physics, Hammond, IN, USA
45
University of Virginia, Department of Astronomy, PO Box 400325 Charlottesville, VA 22904, USA
46
Private Observatory, PA, USA
47
Instituto de Astrofísica de Canarias, University of La Laguna, Tenerife, Spain
48
Dept. Earth and Planetary Science, The University of Tokyo, Tokyo, Japan
49
School of Medicine Department of Basic Sciences University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata, Kitakyusyu 807-8555, Japan
50
Planetary Exploration Research Center, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
51
Naylor Observatory, Lewisberry, PA, USA
Key words: methods: data analysis / methods: observational / techniques: photometric / Kuiper belt objects: individual: Quaoar / planets and satellites: rings / errata / addenda
We identified an error in our opacity calculations for Quaoar’s rings in the original paper.
We used the Cuzzi (1985) calculations to obtain the ring opacity, accounting for both the Fresnel diffraction caused by the ring and the Airy diffraction caused by individual particles. These calculations show that the actual ring optical depth is half the apparent optical depth observed during Earth-based stellar occultations, as detailed in the correct equations of our Appendix E. However, this correction was applied twice in our fitting code, resulting in optical depths underestimated by a factor of two in the text and Table E.1.
The corrected values of optical depths are listed in Table 1 below, with the associated corrections on equivalent widths and equivalent depths. This does not change the main conclusion of the original paper, but using the incorrect normal optical depths presented previously would result in underestimated values of the particle filling factor and thus collision rate. Also, when ring photometry becomes available, it would underestimate the particle albedo.
Revised physical parameters of rings Q1R and Q2R.
Moreover, we mentioned an optical depth peaking at τN ∼ 0.4 for the dense part of ring Q1R. Previously, this value was obtained from the equivalent optical depth and the full width at half maximum (FWHM) of the fitted Lorentzian. Here we used the exact peak value to calculate the normal opacities, pN, and optical depths, τN, for the Q1R dense region.
References
- Cuzzi, J. N. 1985, Icarus, 63, 312 [NASA ADS] [CrossRef] [Google Scholar]
© The Authors 2024
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
All Tables
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.