Open Access

Table D.1

RV variability and periodicities in RV and TESS data

Name N(RV)a rmsRVb [m s−1] m10dk [MJup] P1(RV)c [d (FAP)] P2(RV) [d (FAP)] N(TESS) Sectors Pl(TESS)d [d (power)] P2(TESS) [d (power)] P3(TESS) [d (power)] Prote [d] Notesg
HD 105 16 40.7 1.7 1.5 (<0.001) 2.9 (0.005) 2 2.95 (0.82) 2.95±0.1 1, 10
HD 377i 10 62.9f 2.4 (1.8 (0.3)) (3.8 (0.5)) 2 1.80 (0.46) 3.61 (0.28) 3.6±0.1 2, 11
HD 870i 16 5.8 0.2 4 5.7 (0.7) 9.7 (0.44) 3.8 (0.08) 10±1 2
HD 1466i 16 34.8f 1.6 (2.7 (0.03)) 3 2.3 (0.54) 2.6 (0.42) 2.45±0.2 3, 11
HD 1835 14 25.9 1.0 (3.9 (0.04)) 1 7.8 (0.60) 3.8 (0.28) 7.8±0.2 2, 11, 22
HD 3296 19 7.1 0.5 4 2.4–8 (0.3) (6±3) 4
HD 3670i 24 27.2 2.1 1 0.73 (0.32) 1.44 (0.11) 1.44±0.1 2
HD 5133i 26 6.8 0.2 2 9.9 (0.16) 5.4 (0.14) 9.9±0.5 2
HD 5349 12 2.4 0.2 2 6.0 (<0.01) 3.0 (<0.01) (5±2) 5, 22
HD 7570i 28 6.1 0.3 3 5.5 (0.01) 11 (0.01) (11±2) 2
HIP 6276i 18 27.3f 0.9 (6.0 (0.5)) 1 5.96 (0.96) 5.96±0.1 1, 11
HD 10008i 17 10.4 0.3 2 7.1 (0.27) 3.5 (0.26) 12.3 (0.1) (7 or 12) 7
HD 13246i 21 19.3 1.4 1 1.71 (0.63) 1.71±0.1 1
HD 14082 B 16 20.8f 0.7 1 4.09 (0.22) 0.79 (0.18) (4.1±0.3) 8
HD 15060 12 9.3 0.6 4 5.1 (0.04) 8.6 (0.03) (8±3) 2, 22
HD 16673 13 3208l 2 5.0 (0.45) 12.2 (0.14) 7.9 (0.11) (5 or 12) 7,20
HD 17925i 11 18.7f 0.6 2 6.9 (0.52) 4.9 (0.30) 11.9 (0.29) (7 or 12) 7
HD 19668i 14 47.6f 1.6 2.8 (<0.001) 1 5.68 (0.59) 2.69 (0.38) 4.26 (0.19) 5.7±2 2, 10
HD 20759 17 5002l 3 3–10 (0.01) (7±3) 4, 20, 22
HD 22484i 11 2.9 0.2 1 4.43 (0.05) (4.4±0.5) la
HD 23356i 11 4.6 0.1 2 6.7 (0.06) 11.9 (0.06) (12±1) 2
HD 23484i 44 12.7 0.4 1 4.1 (0.22) 9.0 (0.21) 6.3 (0.15) (9±1) 8
BD +23 551 19 41.4 2.3 3 2.4 (0.59) 1.2 (0.20) 2.4±0.1 2
HD 24649 14 19.5f 3.2 (1.7 (0.8)) 2 1.7 (0.62) 1.88 (0.42) 1.8±0.2 3, 11
HD 27638 B 16 26190f 0 6, 20
HD 28069 22 78.5 3.4 1 2.3 (0.78) 2.3±0.1 1
HD 28447 15 4.2 0.3 3 2.6–7 (0.01) (5±2) 4
HD 31392 16 10.1 0.3 3 6.0 (0.19) 12.6 (0.15) (12±2) 2
HD 33081 45 2.9 0.2 2 3.5–10.5 (0.03) (8±3) 4
SAO 150676i 19 211 9.1 (1.8 (0.7)) 3 1.75 (0.8) 1.75±0.1 1, 11
HD 38397i 17 15.8 0.8 4 2.27 (0.84) 2.27±0.1 1
HD 38949 14 14.9f 0.6 (3.8 (0.7)) (9 (0.5)) 3 3.8 (0.46) 7.5 (0.38) 7.5±0.3 2, 11, 22
HD 40136i 13 18.6f 1.1 2 0.96 (0.11) 0.96±0.1 1
HD 43989i 17 143f 6.6 2 1.36 (0.67) 1.36±0.1 1
HD 48370i 20 47.3f 1.6 1 5.18 (0.87) 5.18±0.1 1
HD 50571 37 188f 9.1 24 1.69 (0.12) 1.69±0.1 1
HD 53143 21 15.4f 0.5 (4.8 (0.1)) 25 9.6 (0.6) 4.9 (0.27) 9.6±0.3 2, 11
HD 57703 20 30.4 2.1 3 1.69 (0.13) 1.9 (0.08) (1.8±0.2) 3
HD 59659 44 48.4 3.2 5 1.64 (0.73) 1.64±0.1 1
HD 59967i 28 14.4 0.5 3 5.2 (0.58) 7.9 (0.17) (6±1.5) 3
HD 72687 21 47.9f 1.6 3.8 (0.05) 3 3.8 (0.6) 5.1 (0.27) 1.9 (0.15) (3.8 or 5.1) 7, 10
HD 76151i 34 4.6 0.2 2 3.2–14 (0.15) (8±3) 4
HD 76748 22 7.7 0.3 2 1.4–3 (<0.01) 5, 22
HD 76653 16 16.2f 0.8 2.0 (<0.001) 4 2.1 (0.5) 2.1±0.2 1, 10
CD -49 3972 35 9.5 0.5 4 3.1–11.5 (0.1) (7±3) 4
HD 84075 16 92.9f 3.9 (2.4 (0.05)) 5 2.44 (0.76) 2.44±0.1 1, 11
HD 90905i 19 9.7 0.4 3 2.55 (0.66) 2.55±0.1 1
HD 92945i 14 27.5f 0.9 (3.7 (0.4)) (7.6 (0.5)) 2 3.4 (0.45) 7.4 (0.38) 13.5 (0.21) (7.4 or 13.5) 7, 11
HD 93932 40 6.3 0.3 2 4.3 (<0.01) 5.8 (<0.01) (5±1) 3, 22
HD 101259 15 9.6 0.7 2 0.75–5.5 (0.02) 5, 22
HD 102458i 14 504f 25 2.0 (<0.001) 2 2.0 (0.53) 0.85 (0.2) 2.0±0.1 2, 10
HD 102902 6 911l 3 0.7 (0.13) 1.5 (0.07) 1.5±0.2 2, 20, 22
HD 104231i 27 26.0 2.1 3 0.55 (0.11) 1.04 (0.12) 1.0±0.2 2
HD 105912 27 145f 7.4 1 0.7 (0.13) 1.5 (0.08) 1.5±0.2 2
MML 8i 8 767f 34 2.4 (0.01) 2 2.41 (0.97) 2.4±0.1 1, 10, 21
HD 107146i 13 33.lf 1.2 3.6 (0.001) 0 3.6±0.3 6, 12, 21
HD 107649i 29 577 30 3 0.94 (0.58) 0.94±0.1 1
HD 108857 5 4851l 3 11.4 (<0.01) (11±2) la, 20
HD 109832i 59 804 45 1.3 (0.001) 2 0.79 (0.30) 1.2 (0.26) 1.2±0.2 2, 21
HD 111520i 32 219f 10.9 3 4.7 (0.27) 1.5 (0.1) (5±1) 8
HD 111631i 17 7.9 0.2 0 6
HD 114082i 26 75.6f 5.1 1 1.5–4.2 (0.05) 8 (0.02) (3.5±2) 7
HD 115820i 16 6282h 368 3 5, 21
HD 117214 20 81.8f 5.5 2 2.7 (0.06) 0.55 (0.04) 2.7±0.5 8
HD 117524 19 617f 33 1.8 (0.005) 1 1.75 (0.92) 1.75±0.1 1, 10, 21, 22
MML 36i 21 150f 6.5 4.5 (0.005) 1 4.73 (0.94) 4.73±0.1 1, 10
HD 118972 22 20.3 0.6 2 4.7 (0.6) 9 (0.25) 9±1 2
CD -29 10609 40 37.7f 1.3 0 6
HD 122948 24 8.0 0.3 0 6, 22
HD 125451i 16 96.1 5.0 0 6
MML 43 6 2659l 2 4.2 (0.91) 4.2±0.1 1, 20
HD 129590i 6 11426l 2 4.5 (0.7) 4.5±0.1 1, 20
HD 131156 18 13.2f 0.4 (3.1 (0.05)) 0 (3.1±0.5) 6, 13, 22
HD 132950 34 8.3 0.3 0 6, 22
HD 134910 22 49.7 2.3 1 3.4 (0.55) 3.4±0.1 1
HD 135953i 20 68.0 3.8 1 1.9 (0.41) 0.94 (0.10) 1.9±0.1 2
HD 138398 19 11.0 1.0 0 6, 22
HD 139664i 23 765 34 2 0.88 (0.23) 1.04 (0.1) 0.95±0.1 3, 21
HD 141011 28 1712f 82 2 0.96 (0.15) 0.96±0.1 1, 21
HD 141521i 22 127123l (7.9 (0.2)) 1 7.1 (0.95) 13.8 (0.35) 5.0 (0.25) 7.1±0.2 1, 11, 20, 22
HD 143811 15 11469l 1 4.3 (0.028) 6.4 (0.022) 3.4 (0.019) (5±2) 7, 20
HD 145229 25 12.5 0.5 0 6, 20
HD 145560 30 152 7.8 2 1.4 (0.54) 0.7 (0.1) 1.4±0.1 2
HD 145972i 19 1345 75 (1.5 (0.8)) 2 1.41 (0.41) 1.54 (0.38) 1.48±0.1 3, 11, 21
HD 146181i 20 73.2 4.4 1 1.95 (0.26) 0.99 (0.14) 1.95±0.1 2
HD 147594 23 198 11 (2.8 (0.9)) 2 2.98 (0.8) 2.98±0.1 1, 11
HD 166348i 26 5.2 0.2 1 11.6 (0.61) 6.5 (0.17) 11.6±0.1 2
HD 170773 16 198 9.5 1 0.8 (0.09) (0.8±0.2) 1
HD 180134 32 8.6 0.5 2 4.5 (0.005) 12 (0.004) 2.3 (0.003) 9
HD 181327i 16 6.0f 0.5 2 1.57 (0.3) 0.75 (0.1) 1.6±0.2 2
HD 183216 31 15.7 0.7 2 9.5 (0.3) 5.1 (0.2) (10±2) 2
HD 187897 32 10.9 0.4 0 6
HD 190470 30 8.9f 0.3 2 11.3 (0.12) 5.9 (0.08) 11.3±0.5 2
HD 191089i 15 25.6 1.8 0 6
HD 191849i 23 8.7 0.2 0 6
HD 199260i 23 31.9f 1.3 4.1 (0.01) 2 4.08 (0.85) 4.08±0.1 1, 10
HD 201219 29 14.4f 0.5 0 6
HD 202917 7 178f 6.3 (2.8 (0.3)) 2 3.5 (0.8) 3.5±0.1 1, 11
HD 204277 7 12.8 0.5 0 6, 22
HD 206893 23 84.6 4.1 0 6
HD 208038 5 8.6 0.3 0 6, 22
HD 209253i 16 33.9f 1.4 (3.0 (0.6)) 2 2.95 (0.60) 1.5 (0.18) 2.95±0.1 2, 11
HD 212695i 21 15.5 1.1 1 1.5 (0.18) 2.8 (0.1) 2.8±0.2 2
HD 213941 14 5.2 0.2 0 6, 22
CPD-722713i 21 70.2 2.0 4.4 (<0.001) 4 4.45 (0.95) 4.45±0.1 1, 10
HD 218340i 21 8.7 0.4 1 7.7 (0.12) 7.7±0.1 1
HD 218511i 41 7.2 0.2 3 8.8 (0.22) 5.8 (0.22) (9±1) 2
HD 219498i 22 32.3f 1.2 2.8 (0.005) 1.5 (0.008) 0 2.8±0.3 6, 12
HD 219482i 16 14.9f 0.6 2.2 (<0.001) 2 2.1 (0.5) 2.1±0.1 1, 10
HD 223340i 13 24.5f 1.2 (6.3 (0.1)) 0 (6±1) 6, 13
CD –4415399 21 22.5 0.9 1 5.1 (<0.01) (5.1±0.3) la

Notes. (a)Number of usable spectra in high–cadence RV times series. (b)rmsRV(τ 14 d) as derived from our high–cadence data.(c)Periodicities in the RV data and their false alarm probability (FAP). Non–significant periodicities are listed in brackets. (d)Periodicities in photometric TESS data and power in the GLS periodogram. All listed periods are significant. (e)Most likely stellar rotation period Prot. Uncertain guesses are listed in brackets. (f)Strong anti-correlation between BS and RV with rP ≤ –0.6 suggests RV variability is caused by rotational modulation due to starspots. (g)bf Notes regarding Prot and selection for longer-period survey: (1) Single dominant period in the photometric TESS data, (1a) Single dominant period in the photometric TESS data, but only marginally significant. (2) An approximate 2:1 ratio of two dominant photometric periods and alternating strengths and shapes in the light curve is indicative of two dominant spot groups and the longer of the two periods representing Prot. (3) Two periods close together in the photometric TESS data, we adopt the mean. (4) Multiple frequencies in the photometric TESS data, shifting between sectors, but periodogram power is limited to the given range of periods. (5) No significant periodicity in the photometric TESS data. (6) No TESS data available (yet). (7) Not clear which of the periods represents Prot. (8) The longest period most likely represents Prot. (9) Marginally significant periods, shifting between sectors, not clear indication of Prot. (10) Photometric period(s) clearly detected in RV. (11) Photometric period(s) marginally evident in RV. (12) Strong BS(RV) anti-correlation (rP ≤ −0.8) indicates that the significant RV period is caused by rotational modulation and most likley represents Prot. (13) Strong BS(RV) anti–correlation (rP ≤ −0.7) suggests that the marginally significant RV period is caused by rotational modulation and may represent Prot. (20) SB. (21) M1yr > 80 MJup. (22) No significant debris disc signal. (h)HD 115820 turns out to be a δ Scuti varaible. The GLS periodigram of the TESS photometry shows several g-mode pulsation periods between 42 and 68 min, which explains the large RV scatter. (i)Observed with NaCo under the ISPY programme. (k)Mass detection limits for P = 10d corresponding to 3×rmsRV(τ 14d). The corresponding mass-detection limit for P = 1 yr is M1yr = M10d × (365/10)(1/3). (l)Spectroscopic binary (Sect. 6.4).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.