Open Access

Table 1.

Details of the ensemble of simulations performed for this work.

Designation Initial conditions ng ns or np Type
Quasi 1D
VLA-Q1D-HR ϵ = (1/6, 1/8) 512 256 Vlasov, I = 10−6
VLA-Q1D-MRa 256 256 Vlasov, I = 10−6
VLA-Q1D-MR 256 128 Vlasov, I = 10−6
VLA-Q1D-LR 128 64 Vlasov, I = 10−5
PM-Q1D-UHR 1024 1024 PM

Anisotropic 1
VLA-ANI1-HR ϵ = (5/8, 1/2) 512 256 Vlasov, I = 10−6, Shift
PM-ANI1-HR 512 512 PM

Anisotropic 2
VLA-ANI2-UHR ϵ = (3/4, 1/2) 1024 512 Vlasov, I = 10−7
VLA-ANI2-FHR 512 512 Vlasov, I = 10−7
VLA-ANI2-HR 512 256 Vlasov, I = 10−6
VLA-ANI2-HRS 512 256 Vlasov, I = 10−6, Shift
VLA-ANI2-MRa 256 256 Vlasov, I = 10−7
VLA-ANI2-MR 256 128 Vlasov, I = 10−6
VLA-ANI2-LRa 128 256 Vlasov, I = 10−7
VLA-ANI2-LR 128 64 Vlasov, I = 10−5
PM-ANI2-UHR 1024 1024 PM
PM-ANI2-HR 512 512 PM
PM-ANI2-MR 256 512 PM
PM-ANI2-LR 128 512 PM
PM-ANI2-HR-D8 512 256 PM
PM-ANI2-HR-D64 512 128 PM

Anisotropic 3
VLA-ANI3-HR ϵ = (7/8, 1/2) 512 256 Vlasov, I = 10−6, Shift
PM-ANI3-HR 512 512 PM

VLA-SYM-FHR ϵ = (1, 1) 512 512 Vlasov, I = 10−7
VLA-SYM-HR 512 256 Vlasov, I = 10−6
VLA-SYM-HRS 512 256 Vlasov, I = 10−6, Shift
VLA-SYM-MRa 256 256 Vlasov, I = 10−7
VLA-SYM-MR 256 128 Vlasov, I = 10−6
VLA-SYM-LR 128 64 Vlasov, I = 10−5
PM-SYM-UHR 1024 1024 PM
PM-SYM-HR 512 512 PM

CDM halos 1, 2
VLA-CDM12.5-HR CDM, L = 12.5 pc h−1 512 256 Vlasov, I = 10−6
VLA-CDM12.5-MR 256 128 Vlasov, I = 10−6
VLA-CDM12.5-LR 128 64 Vlasov, I = 10−6
PM-CDM12.5-HR 512 512 PM

CDM halos 3, 4, 5
VLA-CDM25-HR CDM, L = 25 pc h−1 512 256 Vlasov, I = 10−6
VLA-CDM25-MR 256 128 Vlasov, I = 10−6
VLA-CDM25-LR 128 64 Vlasov, I = 10−6
PM-CDM25-HR 512 512 PM

Notes. The first column corresponds to the designation of the run. The second column gives the type of initial conditions, namely the relative amplitudes ϵi of the initial sine waves or the size L of the box for the CDM simulations. The third column indicates the spatial resolution ng of the grid used to solve Poisson equation. The fourth column mentions the spatial resolution ns of the mesh of vertices used to construct the initial tessellation for the Vlasov runs or the number of particles for the PM runs. Finally, the fifth column specifies which kind of code was used, as well as the value of the parameter I used to bound violation to conservation of Poincaré invariants in the case of the Vlasov runs (Eqs. (13) and (14)). It also mentions, when relevant, if a small shift was applied to vertex positions in initial conditions.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.