Open Access

Table B.1

Spectroscopic parameters of the selected molecular species detected towards L183, along with the results of the line Gaussian fits from CASSIS.

Species Transition Fre˙quency Eup˙/kb Aij rms (a) Tmb FWHM vlsr τ (b) Database Ref.
(GHz) (K) (s−1) (mK) (mK) (km s−1) (km s−1)
CH3 CHO = 21,2 –10,1 (A) 84. 21975 4. 97 2.29 × 10−6 5. 5 22. 2 0.51 ± 0.20 2.32 ± 0.08 0.006 ± 0.002 JPL (1)
= 50,5 –40,4 (E) 95. 94744 13. 93 2.84 × 10−5 9. 1 49. 2 0.52 ± 0.05 2.43 ± 0.02 0.013 ± 0.001
= 31,3 –20,2 (E1E2) 101. 34344 7. 73 3.76 × 10−6 3. 1 13. 8 0.38 ± 0.04 2.47 ± 0.01 0.004 ± 0.000
= 31,3 –20,2 (A) 101. 89241 7. 66 3.89 × 10−6 3. 1 17. 2 0.55 ± 0.11 2.35 ± 0.04 0.004 ± 0.001
t-HCOOH = 41,4 –31,3 86. 54619 13. 57 6.35 × 10−6 2. 9 36. 0 0.41 ± 0.04 2.44 ± 0.01 0.007 ± 0.001 CDMS (2)
= 40,4 –30,3 89. 57918 10. 76 7.51 × 10−6 2. 4 49. 4 0.50 ± 0.02 2.47 ± 0.01 0.009 ± 0.000
= 41,3 –31,2 93. 09836 14. 35 7.91 × 10−6 8. 2 37. 6 0.52 ± 0.11 2.36 ± 0.04 0.007 ± 0.001
CH3 CCH JK = 51 –41 (E) 85. 45562 19. 50 1.78 × 10−6 2. 1 37. 2 0.39 ± 0.03 2.21 ± 0.01 0.017 ± 0.001 CDMS (3)
JK = 50 –40 (E) 85. 45727 12. 30 1.86 × 10−6 2. 1 42. 7 0.38 ± 0.02 2.27 ± 0.01 0.019 ± 0.001
CH3 OCHO = 71,6 –61,5 (E) 88. 84319 17. 96 9.82 × 10−6 1. 9 9. 4 0.30 ± 0.07 2.42 ± 0.03 0.001 ± 0.000 JPL (4)
= 71,6 –61,5 (A) 88. 85161 17. 94 9.82 × 10−6 2. 0 14. 1 0.40 ± 0.05 2.43 ± 0.02 0.001 ± 0.000
= 81,8 –71,7 (E) 89. 31466 20. 15 1.02 × 10−5 2. 4 8. 7 0.36 ± 0.05 2.47 ± 0.02 0.001 ± 0.000
= 82,6 –72,5 (A) 103. 47866 24. 63 1.52 × 10−5 3. 8 16. 1 0.30 ± 0.09 2.41 ± 0.04 0.001 ± 0.000
H2 CCO = 51,5 –41,4 100. 09451 27. 46 1.03 × 10−5 3. 2 61. 1 0.48 ± 0.02 2.39 ± 0.01 0.003 ± 0.000 CDMS (5)
= 50,5 –40,4 101. 03663 14. 55 1.10 × 10−5 2. 5 42. 3 0.47 ± 0.02 2.42 ± 0.01 0.002 ± 0.000
= 51,4 –41,3 101. 98143 27. 74 1.09 × 10−5 2. 3 58. 9 0.41 ± 0.02 2.36 ± 0.01 0.003 ± 0.000
CH2 DOH = 11,0 –10,1 (e0) 85. 29673 6. 24 4.48 × 10−6 2. 1 34. 0 0.39 ± 0.03 2.13 ± 0.01 0.008 ± 0.000 JPL (6)
= 21,2 –11,1 (e0) 88. 07307 10. 40 1.44 × 10−6 2. 4 24. 3 0.48 ± 0.05 2.19 ± 0.02 0.006 ± 0.001
= 31,2 –30,3 (e0) 88. 75451 17. 13 4.92 × 10−6 1. 9 19. 6 0.40 ± 0.04 2.05 ± 0.02 0.005 ± 0.000
= 20,2 –10,1 (e0) 89. 40782 6. 44 2.02 × 10−6 2. 2 115. 1 0.36 ± 0.01 2.09 ± 0.00 0.029 ± 0.001
CH3 OH = 51,5 –40,4 (E2E1) 84. 52117 40. 39 1.97 × 10−6 4. 6 45. 8 0.30 ± 0.03 2.42 ± 0.02 0.010 ± 0.001 JPL (7)
= 21,2 –11,1 (E2) 96. 73936 12. 54 2.56 × 10−6 9. 2 1310. 9 0.48 ± 0.00 2.39 ± 0.00 0.337 ± 0.006
= 20,2 –10,1 (A+) 96. 74137 6. 97 3.41 × 10−6 8. 9 1660. 9 0.49 ± 0.00 2.39 ± 0.00 0.452 ± 0.006
= 20,2 –10,1 (E1) 96. 74455 20. 09 3.41 × 10−6 8. 3 174. 1 0.42 ± 0.02 2.41 ± 0.01 0.039 ± 0.002
= 00,0 –11,1 (E1E2) 108. 89395 13. 12 1.47 × 10−5 9. 3 226. 3 0.42 ± 0.02 2.35 ± 0.01 0.051 ± 0.002
C3 O J= 9–8 86. 59368 20. 78 2.05 × 10−5 2. 8 17. 3 0.50 ± 0.06 2.32 ± 0.02 0.008 ± 0.001 CDMS (8)
HCS+ J= 2–1 85. 34789 6. 14 1.11 × 10−5 1. 7 54. 7 0.42 ± 0.02 2.50 ± 0.01 0.025 ± 0.001 CDMS (9)
SO N= 2–1, J = 2–1 86. 09395 19. 31 5.25 × 10−6 2. 7 628. 9 0.46 ± 0.01 2.42 ± 0.00 0.326 ± 0.005 CDMS (10)
N= 3–2, J = 2–1 109. 25222 21. 05 1.08 × 10−5 9. 9 588. 3 0.42 ± 0.01 2.55 ± 0.00 0.302 ± 0.004
S18 O N= 2–1, J = 3–2 93. 26727 8. 72 9.34 × 10−6 9. 2 146. 6 0.41 ± 0.03 2.08 ± 0.01 0.067 ± 0.004 CDMS (11)
SO2 = 31,3 –20,3 104. 02942 7. 74 1.01 × 10−5 2. 3 281. 1 0.42 ± 0.01 2.42 ± 0.00 0.133 ± 0.003 CDMS (12)
OCS J= 7–6 85. 13910 16. 34 1.71 × 10−6 2. 1 140. 7 0.44 ± 0.01 2.41 ± 0.01 0.017 ± 0.000 CDMS (13)
J= 8–7 97. 30121 21. 01 2.58 × 10−6 8. 1 158. 3 0.42 ± 0.02 2.42 ± 0.01 0.019 ± 0.001
J= 9–8 109. 46306 26. 27 3.70 × 10−6 10. 7 112. 8 0.33 ± 0.02 2.43 ± 0.01 0.014 ± 0.001
C34 S J= 2–1 96. 41295 6. 4 1.60 × 10−5 7. 7 238. 6 0.48 ± 0.02 2.38 ± 0.01 0.112 ± 0.003 CDMS (14)
H2 CS = 31,3 –21,2 101. 47781 22. 91 1.26 × 10−5 2. 6 239. 8 0.38 ± 0.01 2.37 ± 0.00 0.025 ± 0.001 CDMS (15)
= 30,3 –20,2 103. 04045 9. 89 1.48 × 10−5 3. 5 184. 7 0.39 ± 0.02 2.37 ± 0.01 0.020 ± 0.001
= 31,2 –21,1 104. 61703 23. 21 1.38 × 10−5 3. 0 149. 0 0.37 ± 0.01 2.42 ± 0.01 0.016 ± 0.000
c-C3 H2 = 21,2 –10,1 84. 72770 16. 14 1.15 × 10−5 3. 5 51. 6 0.32 ± 0.02 2.36 ± 0.01 0.023 ± 0.001 CDMS (16)
= 32,2 –31,3 85. 33889 6. 45 2.55 × 10−5 4. 2 860. 9 0.35 ± 0.01 2.36 ± 0.00 0.480 ± 0.009
c-H13 CCCH = 21,2 –10,1 84. 18563 6. 33 2.39 × 10−5 4. 3 54. 9 0.33 ± 0.03 2.28 ± 0.01 0.025 ± 0.002 CDMS (16)
l-C3 H2 = 41,3 –31,2 83. 93370 23. 43 4.82 × 10−5 5. 0 56. 3 0.25 ± 0.05 2.34 ± 0.01 0.014 ± 0.002 CDMS (17)
= 51,5 –41,4 102. 99238 28. 19 9.33 × 10−5 3. 9 22. 4 0.29 ± 0.06 2.33 ± 0.03 0.005 ± 0.001
= 51,4 –41,3 104. 91558 28. 46 9.86 × 10−5 2. 6 22. 5 0.32 ± 0.02 2.32 ± 0.01 0.005 ± 0.000
C4 H N= 9–8, J = 19/2–17/2, F = 9–8 85. 63400 20. 55 2.60 × 10−6 2. 3 122. 6 0.33 ± 0.01 2.39 ± 0.00 0.056 ± 0.001 CDMS (18)
N= 9–8, J = 17/2–15/2, F = 8–7 85. 67258 20. 56 2.59 × 10−6 2. 5 118. 2 0.31 ± 0.01 2.38 ± 0.01 0.054 ± 0.002
N= 11–10, J = 23/2–21/2, F = 11–10 104. 66656 30. 14 4.81 × 10−6 2. 9 32. 7 0.26 ± 0.01 2.37 ± 0.01 0.015 ± 0.001
N= 11–10, J = 21/2–19/2, F = 10–9 104. 70511 30. 16 4.79 × 10−6 3. 6 30. 4 0.21 ± 0.04 2.34 ± 0.01 0.014 ± 0.002
CCH N= 1–0, J = 3/2–1/2, F = 1–1 87. 28410 4. 19 2.60 × 10−7 2. 6 229. 1 0.34 ± 0.01 2.33 ± 0.00 0.025 ± 0.001 CDMS (19)
N= 1–0, J = 3/2–1/2, F = 1–0 87. 32859 4. 19 1.27 × 10−6 3. 0 615. 5 0.36 ± 0.01 2.33 ± 0.00 0.070 ± 0.001
N= 1–0, J = 1/2–1/2, F = 1–1 87. 40199 4. 20 1.27 × 10−6 3. 2 636. 0 0.36 ± 0.00 2.35 ± 0.00 0.072 ± 0.001
N= 1–0, J = 1/2–1/2, F = 0–1 87. 40716 4. 20 1.54 × 10−6 3. 1 362. 2 0.35 ± 0.01 2.36 ± 0.00 0.040 ± 0.001
N= 1–0, J = 1/2–1/2, F = 1–0 87. 44647 4. 20 2.61 × 10−7 3. 1 218. 9 0.36 ± 0.01 2.35 ± 0.00 0.024 ± 0.001
HC18 O+ J= 1–0 85. 16222 4. 09 3.64 × 10−5 2. 0 100. 2 0.41 ± 0.01 2.41 ± 0.00 0.045 ± 0.001 CDMS (20)
HOCO+ = 40,4 –30,3 85. 53151 10. 26 1.29 × 10−5 2. 2 73. 0 0.37 ± 0.01 2.43 ± 0.00 0.033 ± 0.001 CDMS (21)
HNCO = 40,4 –30,3 87. 92524 10. 55 8.78 × 10−6 3. 7 573. 0 0.44 ± 0.00 2.40 ± 0.00 0.292 ± 0.002 CDMS (22)
= 50,5 –40,4 109. 90575 15. 82 1.75 × 10−5 10. 8 504. 1 0.32 ± 0.01 2.39 ± 0.01 0.252 ± 0.009
HC3 N J= 11–10 100. 07639 28. 82 7.77 × 10−5 3. 9 196. 3 0.29 ± 0.01 2.36 ± 0.00 0.091 ± 0.002 CDMS (23)
J= 12–11 109. 17363 34. 06 1.01 × 10−4 9. 0 95. 3 0.28 ± 0.02 2.32 ± 0.01 0.043 ± 0.002
C17 O J= 1–0, F = 1.5–2.5 112. 35878 5. 39 6.70 × 10−8 13. 4 245. 6 0.45 ± 0.02 2.40 ± 0.01 0.030 ± 0.001 CDMS (24)
J= 1–0, F = 3.5–2.5 112. 35898 5. 39 6.70 × 10−8 13. 4 470. 4 0.45 ± 0.02 2.40 ± 0.01 0.057 ± 0.001
J= 1–0, F = 2.5–2.5 112. 36001 5. 39 6.70 × 10−8 13. 4 352. 7 0.45 ± 0.02 2.40 ± 0.01 0.042 ± 0.001
C18 O J= 1–0 109. 78217 5. 27 6.27 × 10−8 11. 6 3125. 5 0.48 ± 0.01 2.40 ± 0.01 0.873 ± 0.012 CDMS (25)
13 C18 O J= 1–0 104. 71140 5. 03 5.45 × 10−8 3. 2 33. 1 0.44 ± 0.04 2.44 ± 0.02 0.015 ± 0.001 CDMS (26)
H13 CN J= 1–0, F = 1–1 86. 33877 4. 14 2.22 × 10−5 2. 8 180. 6 0.44 ± 0.01 2.50 ± 0.00 1.17 ± 0.02 CDMS (27)
J= 1–0, F = 2–1 86. 34018 4. 14 2.22 × 10−5 1. 1 222. 7 0.45 ± 0.00 2.44 ± 0.00 1.95 ± 0.10
J= 1–0, F = 0–1 86. 34227 4. 14 2.22 × 10−5 1. 1 89. 3 0.38 ± 0.01 2.46 ± 0.00 0.39 ± 0.06
H15 NC J= 1–0 88. 86572 4. 26 1.98 × 10−5 4. 6 366. 2 0.38 ± 0.01 2.45 ± 0.00 0.177 ± 0.003 JPL (28)
HN13 C J= 1–0 87. 09083 4. 18 2.38 × 10−5 2. 9 1090. 7 0.59 ± 0.03 2.37 ± 0.01 0.659 ± 0.045 CDMS (29)
H2 C34 S = 31,3 –21,2 99. 77412 22. 76 1.20 × 10−5 3. 1 11. 4 0.32 ± 0.09 2.55 ± 0.04 0.005 ± 0.001 CDMS (30)
= 30,3 –20,2 101. 28434 9. 72 1.41 × 10−5 2. 6 12. 7 0.72 ± 0.14 2.41 ± 0.06 0.006 ± 0.001
HOCN = 40,4 –30,3 83. 90057 10. 07 4.22 × 10−5 4. 1 39. 5 0.74 ± 0.00 2.31 ± 0.00 0.017 ± 0.002 CDMS (31)
= 50,5 –40,4 104. 87468 15. 10 8.42 × 10−5 3. 5 16. 7 0.30 ± 0.06 2.40 ± 0.03 0.007 ± 0.001
c-C3 HD = 21,1 –11,0 95. 99408 7. 56 4.52 × 10−6 7. 6 31. 9 0.31 ± 0.05 2.42 ± 0.02 0.009 ± 0.001 CDMS (16)
= 30,3 –21,2 104. 18713 10. 85 3.96 × 10−5 2. 7 141. 1 0.31 ± 0.01 2.35 ± 0.00 0.038 ± 0.001
= 31,3 –21,2 104. 79971 10. 88 7.29 × 10−6 2. 9 22. 5 0.34 ± 0.06 2.38 ± 0.02 0.006 ± 0.001
HDCS = 30,3 –20,2 92. 98160 8. 93 1.09 × 10−5 9. 5 117. 2 0.35 ± 0.01 2.48 ± 0.00 0.053 ± 0.001 CDMS (30)
D2 CS = 30,3 –20,2 85. 15392 8. 18 8.48 × 10−6 2. 1 74. 9 0.35 ± 0.01 2.46 ± 0.00 0.034 ± 0.001 CDMS (30)
= 31,2 –21,1 87. 30266 14. 72 8.12 × 10−6 2. 8 20. 6 0.44 ± 0.05 2.43 ± 0.02 0.009 ± 0.001
DNCO = 50,5 –40,4 101. 96369 14. 68 1.44 × 10−5 2. 3 39. 0 0.30 ± 0.02 2.47 ± 0.01 0.017 ± 0.001 JPL (32)
DC3 N J= 10–9 84. 42981 22. 29 4.67 × 10−5 4. 7 56. 0 0.28 ± 0.02 2.38 ± 0.01 0.025 ± 0.002 CDMS (33)
NH2 D = 11,1 –10,1, F1 = 0–1, F = 0–1 85. 92478 20. 68 2.35 × 10−5 2. 2 933. 9 0.52 ± 0.01 2.40 ± 0.01 0.40 ± 0.01 CDMS (34)
= 11,1 –10,1, F1 = 0–1, F = 2–1 85. 92570 20. 68 5.87 × 10−6 2. 2 1241. 5 0.52 ± 0.01 2.39 ± 0.00 0.49 ± 0.03
= 11,1 –10,1, F1 = 0–1, F = 2–2 85. 92627 20. 68 1.76 × 10−5 2. 2 1957. 3 0.52 ± 0.01 2.42 ± 0.01 1.49 ± 0.01
= 11,1 –10,1, F1 = 0–1, F = 1–2 85. 92688 20. 68 9.78 × 10−6 2. 2 1131. 2 0.52 ± 0.01 2.44 ± 0.01 0.49 ± 0.03
= 11,1 –10,1, F1 = 0–1, F = 1–0 85. 92773 20. 68 7.82 × 10−6 2. 2 1005. 6 0.52 ± 0.01 2.47 ± 0.00 0.40 ± 0.01
N2 H+ J= 1–0, F1 = 1–1, F = 0–1 93. 17162 4. 47 3.63 × 10−5 10. 5 851. 3 0.35 ± 0.01 2.40 ± 0.01 0.60 ± 0.01 CDMS (35)
J= 1–0, F1 = 1–1, F = 2–2 93. 17191 4. 47 2.72 × 10−5 10. 5 1513. 6 0.41 ± 0.01 2.41 ± 0.00 2.99 ± 0.05
J= 1–0, F1 = 1–1, F = 1–0 93. 17205 4. 47 1.21 × 10−5 10. 5 1483. 2 0.37 ± 0.01 2.40 ± 0.00 1.79 ± 0.03
J= 1–0, F1 = 2–1, F = 2–1 93. 17347 4. 47 2.72 × 10−5 10. 5 1631. 6 0.40 ± 0.00 2.40 ± 0.00 2.99 ± 0.05
J= 1–0, F1 = 2–1, F = 3–2 93. 17377 4. 47 3.63 × 10−5 10. 5 1766. 4 0.43 ± 0.01 2.40 ± 0.01 4.19 ± 0.07
J= 1–0, F1 = 2–1, F = 1–1 93. 17396 4. 47 1.51 × 10−5 10. 5 1296. 3 0.37 ± 0.02 2.41 ± 0.01 1.79 ± 0.03
J= 1–0, F1 = 0–1, F = 1–2 93. 17626 4. 47 2.02 × 10−5 10. 5 1522. 9 0.37 ± 0.00 2.40 ± 0.00 1.79 ± 0.03
NS+ J= 2–1 100. 19855 7. 21 2.21 × 10−5 3. 1 14. 4 0.66 ± 0.16 2.04 ± 0.07 0.006 ± 0.002 CDMS (36)

Notes. (a) The rms on a 50 kHz frequency bin was computed over a range of 30 km s−1. (b) The optical depth was derived from Eq. (4) for all the species. For the species with more than two observed transitions, the Tex used was the one derived from the MCMC or HFS fitting (see Table B.2); in all the other cases the optical depth was derived assuming Tex = 5 K.

References. Spectroscopic data from: (1) Kleiner et al. (1996); (2) Winnewisser et al. (2002); (3) Cazzoli & Puzzarini (2008); (4) Ilyushin et al. (2009); (5) Johns et al. (1992); (6) Pearson et al. (2012); (7) Xu et al. (2008); (8) Tang et al. (1985); (9) Margulès et al. (2003); (10) Cazzoli et al. (1994); (11) Tiemann (1974); (12) Müller & Brünken (2005); (13) Golubiatnikov et al. (2005); (14) Müller et al. (2005); (15) Maeda et al. (2008); (16) Spezzano et al. (2012); (17) Vrtilek et al. (1990); (18) Gottlieb et al. (1983); (19) Padovani et al. (2009); (20) Schmid-Burgk et al. (2004); (21) Bizzocchi et al. (2017); (22) Lapinov et al. (2007); (23) Thorwirth et al. (2000); (24) Cazzoli et al. (2002); (25) Winnewisser et al. (1985); (26) Klapper et al. (2000); (27) Cazzoli & Puzzarini (2005); (28) Pearson et al. (1976); (29) van der Tak et al. (2009); (30) Müller et al. (2019); (31) Brünken et al. (2009); (32) Hocking et al. (1975); (33) Spahn et al. (2008); (34) Fusina et al. (1988); (35) Cazzoli et al. (2012); (36) Cernicharo et al. (2018).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.