Table A.1.
Fit parameters of the RAM Hamiltonian for SH molecule.
ntr(a) | Operator (b) | Par. (c) | Value (d)(e) |
---|---|---|---|
22, 0 | ![]() |
F | 15.04062399(54) |
22, 0 | (1 − cos3α) | (1/2)V3 | 220.84568(12) |
21, 1 | pαPa | ρ | 0.6518557764(11) |
20, 2 | ![]() |
A | 3.4279249(17) |
20, 2 | ![]() |
B | 0.4320294(32) |
20, 2 | ![]() |
C | 0.4132203(21) |
20, 2 | (1/2){Pa, Pb} | 2Dab | −00.1474403(84) |
44, 0 | ![]() |
Fm | −0.1121789(22) × 10−2 |
44, 0 | (1 − cos6α) | (1/2)V6 | −0.96060(59) |
43, 1 | ![]() |
ρm | −0.3554280(60) × 10−2 |
42, 2 | ![]() |
FJ | −0.3094800(28) × 10−4 |
42, 2 | ![]() |
FK | −0.4789751(62) × 10−2 |
42, 2 | ![]() |
Fab | 0.21490(90) × 10−4 |
42, 2 | ![]() |
Fbc | −0.65884(82) × 10−4 |
42, 2 | P2(1 − cos3α) | V3J | −0.2062768(53) × 10−2 |
42, 2 | ![]() |
V3K | 0.7277626(39) × 10−2 |
42, 2 | ![]() |
V3bc | −0.81043(38) × 10−4 |
42, 2 | (1/2){Pa, Pb}(1 − cos3α) | V3ab | 0.1228394(37) × 10−1 |
42, 2 | (1/2){Pa, Pc}sin3α | D3ac | 0.154598(30) × 10−1 |
42, 2 | (1/2){Pb, Pc}sin3α | D3bc | −0.12835(27) × 10−2 |
41, 3 | pαPaP2 | ρJ | −0.4255507(38) × 10−4 |
41, 3 | ![]() |
ρK | −0.2958211(29) × 10−2 |
41, 3 | ![]() |
ρbc | −0.85348(80) × 10−4 |
41, 3 | ![]() |
ρab | 0.20049(86) × 10−4 |
40, 4 | P4 | −ΔJ | −0.5393457(89) × 10−6 |
40, 4 | ![]() |
−ΔJK | −0.1784933(23) × 10−4 |
40, 4 | ![]() |
−ΔK | −0.6990318(56) × 10−3 |
40, 4 | ![]() |
−2δJ | −0.456395(15) × 10−7 |
40, 4 | ![]() |
−2δK | −0.218299(40) × 10−4 |
66, 0 | ![]() |
Fmm | −0.20877(12) × 10−5 |
66, 0 | (1 − cos9α) | (1/2)V9 | 2.9920(25) |
65, 1 | ![]() |
ρmm | −0.76728(49) × 10−5 |
64, 2 | ![]() |
FmJ | 0.3736(27) × 10−8 |
64, 2 | ![]() |
FmK | −0.113906(83) × 10−4 |
64, 2 | ![]() |
Fmbc | 0.3796(76) × 10−7 |
64, 2 | P2(1 − cos6α) | V6J | −0.1915(26) × 10−4 |
64, 2 | ![]() |
V6K | −0.22093(13) × 10−3 |
64, 2 | ![]() |
V6bc | −0.6466(26) × 10−4 |
64, 2 | (1/2){Pa, Pc}sin6α | D6ac | 0.31308(91) × 10−3 |
63, 3 | ![]() |
ρmJ | 0.8891(70) × 10−8 |
63, 3 | ![]() |
ρmK | −0.85938(76) × 10−5 |
63, 3 | ![]() |
ρmbc | 0.1205(21) × 10−6 |
62, 4 | ![]() |
FJJ | 0.20615(36) × 10−9 |
62, 4 | ![]() |
FJK | 0.9542(67) × 10−8 |
62, 4 | ![]() |
FKK | −0.33234(41) × 10−5 |
62, 4 | ![]() |
FbcJ | −0.8182(45) × 10−10 |
62, 4 | ![]() |
FbcK | 0.1480(20) × 10−6 |
62, 4 | ![]() |
Fb2c2 | −0.1738(14) × 10−9 |
62, 4 | P4(1 − cos3α) | V3JJ | 0.51439(29) × 10−8 |
62, 4 | ![]() |
V3JK | −0.26484(14) × 10−6 |
62, 4 | ![]() |
V3KK | 0.46471(31) × 10−6 |
62, 4 | (1/2)P2{Pa, Pb}(1 − cos3α) | V3abJ | 0.11219(57) × 10−7 |
62, 4 | ![]() |
V3abK | −0.4746(37) × 10−6 |
62, 4 | ![]() |
V3bcJ | 0.7672(16) × 10−9 |
62, 4 | ![]() |
V3ab3 | 0.15041(20) × 10−6 |
62, 4 | ![]() |
V3b2c2 | 0.5263(30) × 10−8 |
62, 4 | (1/2)P2{Pa, Pc}sin3α | D3acJ | −0.28198(38) × 10−6 |
62, 4 | ![]() |
D3acK | −0.3880(64) × 10−6 |
62, 4 | ![]() |
D3ac3 | 0.16507(25) × 10−6 |
62, 4 | ![]() |
D3bcbc | −0.45717(51) × 10−8 |
61, 5 | pαPaP4 | ρJJ | 0.22733(31) × 10−9 |
61, 5 | ![]() |
ρJK | 0.5427(29) × 10−8 |
61, 5 | ![]() |
ρKK | −0.5450(13) × 10−6 |
61, 5 | ![]() |
ρbcK | 0.8249(85) × 10−7 |
60, 6 | P6 | ΦJ | −0.25598(61) × 10−12 |
60, 6 | ![]() |
ΦJK | 0.7921(13) × 10−10 |
60, 6 | ![]() |
ΦKJ | 0.13245(45) × 10−8 |
60, 6 | ![]() |
ΦK | −0.916(18) × 10−8 |
60, 6 | ![]() |
2ϕJ | −0.1142(10) × 10−12 |
60, 6 | ![]() |
2ϕJK | 0.9298(40) × 10−10 |
60, 6 | ![]() |
2ϕK | 0.1718(20) × 10−7 |
88, 0 | ![]() |
Fmmm | −0.5619(47) × 10−8 |
88, 0 | (1 − cos12α) | (1/2)V12 | −6.9965(61) |
87, 1 | ![]() |
ρmmm | −0.2573(24) × 10−7 |
86, 2 | ![]() |
FmmK | −0.4954(50) × 10−7 |
86, 2 | ![]() |
Fmmbc | 0.1167(30) × 10−11 |
86, 2 | P2(1 − cos9α) | V9J | 0.322(11) × 10−4 |
86, 2 | ![]() |
V9K | 0.22615(29) × 10−3 |
86, 2 | (1/2){Pa, Pb}(1 − cos9α) | V9ab | 0.15887(39) × 10−3 |
86, 2 | ![]() |
V9bc | 0.6532(89) × 10−4 |
86, 2 | (1/2){Pb, Pc}sin9α | D9bc | 0.313(17) × 10−4 |
85, 3 | ![]() |
ρmmK | −0.5159(59) × 10−7 |
85, 3 | (1/2){Pa, Pb, Pc, pα, sin6α} | ρ6bc | −0.2359(94) × 10−6 |
84, 4 | ![]() |
FmKK | −0.3090(41) × 10−7 |
84, 4 | ![]() |
Fmb2c2 | −0.1148(60) × 10−12 |
84, 4 | P4(1 − cos6α) | V6JJ | −0.1827(78) × 10−9 |
84, 4 | ![]() |
V6JK | −0.20659(69) × 10−7 |
84, 4 | ![]() |
V6KK | 0.3441(31) × 10−7 |
84, 4 | ![]() |
V6bcJ | 0.8955(26) × 10−9 |
84, 4 | ![]() |
V6bcK | 0.5979(97) × 10−7 |
84, 4 | (1/2)P2{Pa, Pc}sin6α | D6acJ | 0.455(22) × 10−8 |
84, 4 | ![]() |
D6acK | −0.910(23) × 10−7 |
84, 4 | (1/2)P2{Pb, Pc}sin6α | D6bcJ | 0.2264(90) × 10−9 |
84, 4 | ![]() |
D3bcmK | 0.300(20) × 10−9 |
83, 5 | ![]() |
ρmJJ | −0.1605(83) × 10−13 |
83, 5 | ![]() |
ρmKK | −0.1024(16) × 10−7 |
82, 6 | ![]() |
FJJJ | 0.2113(50) × 10−15 |
82, 6 | ![]() |
FKKK | −0.1522(30) × 10−8 |
82, 6 | P6(1 − cos3α) | V3JJJ | −0.1844(29) × 10−13 |
82, 6 | ![]() |
V3JJK | 0.1535(19) × 10−11 |
82, 6 | ![]() |
V3bcJJ | 0.1314(11) × 10−12 |
82, 6 | ![]() |
V3bcJK | −0.3552(71) × 10−11 |
82, 6 | ![]() |
V3b6c6 | 0.1441(11) × 10−12 |
82, 6 | ![]() |
D3acKK | 0.555(25) × 10−9 |
82, 6 | (1/2)P4{Pb, Pc}sin3α | D3bcJJ | 0.1229(18) × 10−12 |
82, 6 | ![]() |
D3b3c3 | −0.2336(24) × 10−12 |
82, 6 | ![]() |
D3bcbc6 | 0.5405(51) × 10−13 |
81, 7 | ![]() |
ρabJK | 0.272(12) × 10−12 |
80, 8 | P8 | LJ | −0.1574(73) × 10−17 |
80, 8 | ![]() |
LK | 0.1377(61) × 10−10 |
108, 2 | P2(1 − cos12α) | V12J | −0.1356(27) × 10−3 |
108, 2 | ![]() |
V12bc | −0.617(27) × 10−4 |
108, 2 | (1/2){Pa, Pc}sin12α | D12ac | −0.3484(10) × 10−3 |
108, 2 | (1/2){Pb, Pc}sin12α | D12bc | −0.2484(51) × 10−3 |
107, 3 | (1/2){Pa, Pb, Pc, pα, sin9α} | ρ9bc | −0.3805(87) × 10−5 |
106, 4 | P4(1 − cos9α) | V9JJ | 0.1013(14) × 10−8 |
106, 4 | ![]() |
D9bcK | −0.3058(58) × 10−5 |
104, 6 | P6(1 − cos6α) | V6JJJ | −0.546(34) × 10−14 |
104, 6 | ![]() |
V6bcJJ | −0.1489(60) × 10−13 |
102, 8 | (1/2)P6{Pa, Pc}sin3α | D3acJJJ | 0.206(13) × 10−15 |
102, 8 | ![]() |
D3bcKKK | −0.1237(38) × 10−11 |
128, 4 | ![]() |
D12acK | 0.2173(58) × 10−6 |
128, 4 | ![]() |
D12bcK | 0.1723(47) × 10−5 |
124, 8 | ![]() |
D6bcKKK | 0.587(26) × 10−12 |
Notes.
n = t + r, where n is the total order of the operator, t is the order of the torsional part and r is the order of the rotational part, respectively. The ordering scheme of Nakagawa et al. (1987) is used.
{A,B,C,D,E} = ABCDE + EDCBA. {A,B,C,D} = ABCD + DCBA. {A,B,C} = ABC + CBA. {A,B} = AB + BA. The product of the operator in the second column of a given row and the parameter in the third column of that row gives the term actually used in the torsion–rotation Hamiltonian of the program, except for F, ρ and ARAM, which occur in the Hamiltonian in the form .
The parameter nomenclature is based on the subscript procedure of Xu et al. (2008).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.