Free Access
Erratum
This article is an erratum for:
[https://doi.org/10.1051/0004-6361/201630355]


Issue
A&A
Volume 626, June 2019
Article Number C2
Number of page(s) 1
Section The Sun
DOI https://doi.org/10.1051/0004-6361/201630355e
Published online 12 June 2019

The derivation of the damping rate in the long wavelength limit by Yu et al. (2017) is incorrect. This was already noted independently by Sadeghi and Karami (2019) and by Roberts (2019, priv. comm.). What follows is the correct derivation. The sign of P0 (A.7) in Appendix A was incorrect. Equation (41) should read

T 0 = ω r 2 ( ω r 2 ω Ae 2 ) × { ( ω r 2 2 ω ci 2 ) k i 2 R 2 [ 1 3 16 k i 2 R 2 ] ln ( k e R ) ( ω r 2 ω si 2 ) ( ω r 2 ω Ai 2 ) ( ω r 2 ω Ci 2 ) + ( ω r 2 2 ω Ce 2 ) k i 2 R 2 2 ( ω r 2 ω se 2 ) ( ω r 2 ω Ae 2 ) ( ω r 2 ω Ce 2 ) } $$ \begin{aligned} T_0&= \omega _r^2(\omega ^2_r-\omega _{Ae}^2)\times \nonumber \\&\bigg \{ \frac{(\omega _r^2-2\omega _{ci}^2)k_i^2R^2\big [1-\frac{3}{16}k_i^2R^2\big ]\ln ({k_eR})}{(\omega _r^2-\omega _{si}^2)(\omega _r^2-\omega _{Ai}^2)(\omega _r^2-\omega _{Ci}^2)}\nonumber \\&+\frac{(\omega _r^2-2\omega _{Ce}^2)k_i^2R^2}{2(\omega _r^2-\omega _{se}^2) (\omega _r^2-\omega _{Ae}^2)(\omega _r^2-\omega _{Ce}^2)}\bigg \}\nonumber \end{aligned} $$

and for Eq. (43)

T 0 = 4 ω Ai 6 χ 2 ω Ci 2 ω si 2 ( ω Ci 2 ω Ae 2 ) k z 2 R 2 ln ( k z R ) , $$ \begin{aligned} T_0&= \frac{4\omega _{Ai}^6}{\chi ^2\omega _{Ci}^2\omega _{si}^2(\omega _{Ci}^2-\omega _{Ae}^2)k_z^2R^2\ln (k_zR)} ,\nonumber \end{aligned} $$

where we have only retained the first term (see Eq. (C.1) below). Equations (44) and (45) should then read

γ 0 = π χ 2 ( l / R ) 8 | ω Ce ω Ci | ω Ci 6 ( ω Ci 2 ω Ae 2 ) 2 ω Ai 8 ( k z R ) 4 ln 2 ( k z R ) , $$ \begin{aligned} \gamma _0&= -\frac{\pi \chi ^2(l/R)}{8|\omega _{Ce}-\omega _{Ci}|} \frac{\omega _{Ci}^6(\omega _{Ci}^2-\omega _{Ae}^2)^2}{\omega _{Ai}^8}(k_zR)^4\ln ^2(k_zR),\nonumber \end{aligned} $$

γ 0 = π χ 2 8 l R ω Ci 9 ω Ai 8 ( k z R ) 4 ln 2 ( k z R ) . $$ \begin{aligned}\gamma _0&= -\frac{\pi \chi ^2}{8}\frac{l}{R} \frac{\omega _{Ci}^9}{\omega _{Ai}^8}(k_zR)^4\ln ^2(k_zR).\nonumber \end{aligned} $$

These expressions for γ0 are the same as those obtained by Roberts (2019) by using a different approach.

Equations (C.1), (C.3), and (C.4) in Appendix C should read

T 0 = 4 ω Ai 6 χ 2 ω Ci 2 ω si 2 ( ω Ci 2 ω Ae 2 ) k z 2 R 2 ln ( k z R ) + 3 ω Ai 8 2 χ 3 ω si 4 ( ω Ci 2 ω Ae 2 ) 2 k z 2 R 2 ln 2 ( k z R ) ω Ci 4 ω Ai 2 ( ω Ci 2 2 ω Ce 2 ) χ ω si 2 ( ω Ci 2 ω Ae 2 ) ( ω Ci 2 ω se 2 ) ( ω Ci 2 ω Ce 2 ) ln ( k z R ) , $$ \begin{aligned} T_0&= \frac{4\omega _{Ai}^6}{\chi ^2\omega _{Ci}^2\omega _{si}^2(\omega _{Ci}^2-\omega _{Ae}^2) k_z^2R^2\ln (k_zR)}\nonumber \\&+\frac{3\omega _{Ai}^8}{2\chi ^3\omega _{si}^4(\omega _{Ci}^2-\omega _{Ae}^2)^2 k_z^2R^2\ln ^2(k_zR)}\nonumber \\&-\frac{\omega _{Ci}^4\omega _{Ai}^2(\omega _{Ci}^2-2\omega _{Ce}^2)}{\chi \omega _{si}^2(\omega _{Ci}^2-\omega _{Ae}^2)(\omega _{Ci}^2-\omega _{se}^2) (\omega _{Ci}^2-\omega _{Ce}^2)\ln (k_zR)}\nonumber , \end{aligned} $$

T 0 = 4 ω Ai 6 χ 2 ω Ci 4 ω si 2 k z 2 R 2 ln ( k z R ) + 3 ω Ai 8 2 χ 3 ω si 4 ω Ci 4 k z 2 R 2 ln 2 ( k z R ) ω Ci 2 ω Ai 2 χ ω si 2 ( ω Ci 2 ω se 2 ) ln ( k z R ) , $$ \begin{aligned} T_0&= \frac{4\omega _{Ai}^6}{\chi ^2\omega _{Ci}^4\omega _{si}^2 k_z^2R^2\ln (k_zR)}+\frac{3\omega _{Ai}^8}{2\chi ^3\omega _{si}^4\omega _{Ci}^4 k_z^2R^2\ln ^2(k_zR)}\nonumber \\&-\frac{\omega _{Ci}^2\omega _{Ai}^2}{\chi \omega _{si}^2(\omega _{Ci}^2-\omega _{se}^2) \ln (k_zR)} ,\nonumber \end{aligned} $$

and

γ 0 ω Ci = π χ ( l / R ) ( ω Ci 4 ω si 2 ω Ai 2 ) k z 2 R 2 ln ( k z R ) 4 ω Ai 2 ω Ci 2 8 ω Ai 6 χ ω Ci 4 ω si 2 k z 2 R 2 ln ( k z R ) 3 ω Ai 8 χ 2 ω si 4 ω Ci 4 k z 2 R 2 ln 2 ( k z R ) + 2 ω Ci 2 ω Ai 2 ω si 2 ( ω Ci 2 ω se 2 ) ln ( k z R ) · $$ \begin{aligned} \frac{\gamma _0}{\omega _{Ci}}= \frac{\pi \chi (l/R)\bigg (\frac{\omega _{Ci}^4}{\omega _{si}^2\omega _{Ai}^2}\bigg )k_z^2R^2\ln (k_zR)}{\frac{4\omega _{Ai}^2}{\omega _{Ci}^2}-\frac{8\omega _{Ai}^6}{\chi \omega _{Ci}^4\omega _{si}^2 k_z^2R^2\ln (k_zR)} -\frac{3\omega _{Ai}^8}{\chi ^2\omega _{si}^4\omega _{Ci}^4k_z^2R^2\ln ^2(k_zR)} +\frac{2\omega _{Ci}^2\omega _{Ai}^2}{\omega _{si}^2(\omega _{Ci}^2-\omega _{se}^2) \ln (k_zR)}}\cdot \nonumber \end{aligned} $$

thumbnail Fig. 5.

Damping rate |γ0|/ω versus kzR for slow sausage surface mode (ss) where l/R = 0.1. The other parameters are the same as in the previous figures. For the linear cusp velocity, we compared the analytical formula, Eq. (35), with the simplified formula in the long wavelength limit, Eq. (45).

It should be noted that the values of the quantity |γ 0|/ω in Fig. 5 are small as can be understood from the equation for |γ 0|/ω for the values of k z R ≤ 0.4 used in Fig. 5.

We note also that eight in the second paragraph after Eq. (10) and 8 in the caption of Fig. 1 should read four.

Acknowledgments

We are grateful to B. Roberts for pointing out the error in our manuscript. Equations (41), (43)–(45), (A.7), (C.1), (C.3), and (C.4) were wrong in our paper.

References

  1. Yu, D. J., Van Doorsselaere, T., & Goossens, M. 2017, A&A 602, A108 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  2. Sadeghi, M. & Karami, K. 2019, ArXiv e-prints [arXiv:1903.04171] [Google Scholar]

© ESO 2019

All Figures

thumbnail Fig. 5.

Damping rate |γ0|/ω versus kzR for slow sausage surface mode (ss) where l/R = 0.1. The other parameters are the same as in the previous figures. For the linear cusp velocity, we compared the analytical formula, Eq. (35), with the simplified formula in the long wavelength limit, Eq. (45).

In the text

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.