Table A.1.
Computed excitation energies in cm−1 for the 78 lowest states in Al II.
VV |
|||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Pos. | Conf. | LSJ | n = 8 | n = 9 | n = 10 | n = 11 | n = 12 | n = 13 | CV | Eobsa | ΔE |
1 | 3s2 | 1S0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 3s 3p | ![]() |
36 227 | 36 280 | 36 298 | 36 318 | 36 332 | 36 335 | 37 445 | 37 393 | −52 |
3 | ![]() |
36 286 | 36 339 | 36 357 | 36 377 | 36 391 | 36 394 | 37 503 | 37 454 | −49 | |
4 | ![]() |
36 405 | 36 459 | 36 477 | 36 496 | 36 511 | 36 514 | 37 626 | 37 578 | −48 | |
5 | ![]() |
59 810 | 59 698 | 59 617 | 59 619 | 59 606 | 59 602 | 59 982 | 59 852 | −130 | |
6 | 3p2 | 1D2 | 83 542 | 83 596 | 83 620 | 83 641 | 83 657 | 83 660 | 85 692 | 85 481 | −211 |
7 | 3s 4s | 3S1 | 89 965 | 90 028 | 90 059 | 90 082 | 90 099 | 90 102 | 91 425 | 91 275 | −150 |
8 | 3p2 | 3P0 | 92 679 | 92 709 | 92 716 | 92 736 | 92 750 | 92 752 | 94 211 | 94 085 | −126 |
9 | 3P1 | 92 739 | 92 769 | 92 776 | 92 795 | 92 809 | 92 812 | 94 264 | 94 147 | −117 | |
10 | 3P2 | 92 855 | 92 885 | 92 892 | 92 912 | 92 926 | 92 928 | 94 375 | 94 269 | −106 | |
11 | 3s 4s | 1S0 | 94 003 | 94 057 | 94 084 | 94 101 | 94 111 | 94 114 | 95 543 | 95 351 | −192 |
12 | 3s 3d | 3D2 | 94 262 | 94 243 | 94 241 | 94 262 | 94 278 | 94 280 | 95 791 | 95 549 | −242 |
13 | 3D1 | 94 261 | 94 243 | 94 242 | 94 263 | 94 279 | 94 281 | 95 794 | 95 551 | −243 | |
14 | 3D3 | 94 263 | 94 242 | 94 239 | 94 261 | 94 276 | 94 279 | 95 804 | 95 551 | −253 | |
15 | 3s 4p | ![]() |
103 935 | 104 003 | 104 030 | 104 053 | 104 070 | 104 073 | 105 582 | 105 428 | −154 |
16 | ![]() |
103 948 | 104 017 | 104 044 | 104 067 | 104 084 | 104 087 | 105 594 | 105 442 | −152 | |
17 | ![]() |
103 976 | 104 045 | 104 073 | 104 095 | 104 112 | 104 115 | 105 623 | 105 471 | −152 | |
18 | ![]() |
105 597 | 105 643 | 105 655 | 105 673 | 105 683 | 105 685 | 107 132 | 106 921 | −211 | |
19 | 3s 3d | 1D2 | 109 010 | 108 919 | 108 897 | 108 910 | 108 918 | 108 918 | 110 330 | 110 090 | −240 |
20 | 3p2 | 1S0 | 111 100 | 110 804 | 110 659 | 110 643 | 110 618 | 110 608 | 112 086 | 111 637 | −449 |
21 | 3s 5s | 3S1 | 118 564 | 118 632 | 118 661 | 118 685 | 118 702 | 118 705 | 120 259 | 120 093 | −166 |
22 | 1S0 | 119 807 | 119 878 | 119 908 | 119 931 | 119 946 | 119 948 | 121 544 | 121 367 | −177 | |
23 | 3s 4d | 3D2 | 120 013 | 120 034 | 120 045 | 120 068 | 120 085 | 120 088 | 121 684 | 121 484 | −200 |
24 | 3D1 | 120 013 | 120 034 | 120 046 | 120 068 | 120 085 | 120 088 | 121 685 | 121 484 | −201 | |
25 | 3D3 | 120 014 | 120 034 | 120 045 | 120 068 | 120 084 | 120 087 | 121 688 | 121 484 | −204 | |
26 | 3s 4f | ![]() |
121 657 | 121 739 | 121 772 | 121 797 | 121 815 | 121 818 | 123 606 | 123 418 | −188 |
27 | ![]() |
121 659 | 121 742 | 121 775 | 121 799 | 121 817 | 121 820 | 123 608 | 123 420 | −188 | |
28 | ![]() |
121 663 | 121 745 | 121 778 | 121 802 | 121 820 | 121 824 | 123 612 | 123 423 | −189 | |
29 | ![]() |
121 735 | 121 818 | 121 852 | 121 876 | 121 894 | 121 898 | 123 657 | 123 471 | −186 | |
30 | 3s 4d | 1D2 | 123 606 | 123 489 | 123 461 | 123 473 | 123 482 | 123 483 | 125 049 | 124 794 | −255 |
31 | 3s 5p | ![]() |
124 108 | 124 185 | 124 212 | 124 236 | 124 254 | 124 257 | 125 869 | 125 703 | −166 |
32 | ![]() |
124 114 | 124 190 | 124 218 | 124 242 | 124 259 | 124 262 | 125 874 | 125 709 | −165 | |
33 | ![]() |
124 126 | 124 203 | 124 231 | 124 254 | 124 272 | 124 275 | 125 887 | 125 722 | −165 | |
34 | ![]() |
124 302 | 124 375 | 124 401 | 124 424 | 124 440 | 124 443 | 126 078 | 125 869 | −209 | |
35 | 3s 6s | 3S1 | 130 615 | 130 689 | 130 716 | 130 740 | 130 758 | 130 761 | 132 386 | 132 216 | −170 |
36 | 1S0 | 131 160 | 131 237 | 131 268 | 131 291 | 131 308 | 131 311 | 132 953 | 132 779 | −174 | |
37 | 3s 5d | 3D2 | 131 265 | 131 307 | 131 326 | 131 348 | 131 365 | 131 368 | 133 013 | 132 823 | −190 |
38 | 3D1 | 131 265 | 131 307 | 131 327 | 131 348 | 131 365 | 131 368 | 133 013 | 132 823 | −190 | |
39 | 3D3 | 131 266 | 131 307 | 131 326 | 131 347 | 131 365 | 131 368 | 133 017 | 132 823 | −194 | |
40 | 3s 5f | ![]() |
131 641 | 131 712 | 131 745 | 131 769 | 131 787 | 131 790 | 133 639 | 133 438 | −201 |
41 | ![]() |
131 647 | 131 718 | 131 751 | 131 776 | 131 794 | 131 797 | 133 644 | 133 443 | −201 | |
42 | ![]() |
131 655 | 131 727 | 131 760 | 131 785 | 131 803 | 131 806 | 133 654 | 133 450 | −204 | |
43 | ![]() |
131 968 | 132 048 | 132 082 | 132 106 | 132 124 | 132 128 | 133 866 | 133 682 | −184 | |
44 | 3s 5d | 1D2 | 132 490 | 132 447 | 132 445 | 132 460 | 132 474 | 132 476 | 134 143 | 133 916 | −227 |
45 | 3s 5g | 3G3 | 132 487 | 132 577 | 132 611 | 132 636 | 132 654 | 132 657 | 134 359 | 134 184 | −175 |
46 | 3G4 | 132 487 | 132 577 | 132 611 | 132 636 | 132 654 | 132 658 | 134 360 | 134 184 | −176 | |
47 | 3G5 | 132 487 | 132 577 | 132 611 | 132 636 | 132 654 | 132 657 | 134 360 | 134 184 | −176 | |
48 | 1G4 | 132 487 | 132 577 | 132 611 | 132 636 | 132 654 | 132 658 | 134 360 | 134 184 | −176 | |
49 | 3s 6p | ![]() |
133 288 | 133 366 | 133 387 | 133 411 | 133 428 | 133 431 | 135 132 | 134 919 | −213 |
50 | ![]() |
133 378 | 133 459 | 133 485 | 133 509 | 133 526 | 133 530 | 135 183 | 135 012 | −171 | |
51 | ![]() |
133 381 | 133 462 | 133 488 | 133 512 | 133 530 | 133 533 | 135 186 | 135 016 | −170 | |
52 | ![]() |
133 388 | 133 468 | 133 494 | 133 518 | 133 536 | 133 539 | 135 192 | 135 022 | −170 | |
53 | 3s 7s | 3S1 | 136 870 | 136 949 | 136 975 | 136 999 | 137 014 | 137 017 | 138 675 | 138 500 | −175 |
54 | 3s 6f | ![]() |
136 665 | 136 628 | 136 655 | 136 678 | 136 695 | 136 698 | 138 810 | 138 521 | −289 |
55 | ![]() |
136 684 | 136 649 | 136 677 | 136 699 | 136 717 | 136 720 | 138 829 | 138 539 | −290 | |
56 | ![]() |
136 709 | 136 677 | 136 704 | 136 727 | 136 745 | 136 748 | 138 862 | 138 562 | −300 | |
57 | 3s 7s | 1S0 | 137 154 | 137 236 | 137 267 | 137 291 | 137 307 | 137 311 | 138 974 | 138 801 | −173 |
58 | 3s 6d | 3D2 | 137 217 | 137 273 | 137 297 | 137 314 | 137 331 | 137 333 | 139 005 | 138 815 | −190 |
59 | 3D1 | 137 217 | 137 273 | 137 297 | 137 314 | 137 331 | 137 333 | 139 005 | 138 815 | −190 | |
60 | 3D3 | 137 218 | 137 273 | 137 297 | 137 314 | 137 331 | 137 333 | 139 010 | 138 815 | −195 | |
61 | 3s 6f | ![]() |
137 562 | 137 625 | 137 657 | 137 681 | 137 699 | 137 702 | 139 437 | 139 245 | −192 |
62 | 3s 6d | 1D2 | 137 753 | 137 754 | 137 767 | 137 786 | 137 801 | 137 803 | 139 497 | 139 289 | −208 |
63 | 3s 6g | 3G3 | 137 898 | 137 988 | 138 022 | 138 046 | 138 065 | 138 067 | 139 766 | 139 591 | −175 |
64 | 3G4 | 137 898 | 137 988 | 138 022 | 138 046 | 138 065 | 138 068 | 139 766 | 139 591 | −175 | |
65 | 3G5 | 137 898 | 137 988 | 138 022 | 138 046 | 138 065 | 138 067 | 139 766 | 139 591 | −175 | |
66 | 1G4 | 137 898 | 137 988 | 138 022 | 138 047 | 138 065 | 138 068 | 139 766 | 139 591 | −175 | |
67 | 3s 6h | ![]() |
137 965 | 138 043 | 138 079 | 138 103 | 138 121 | 138 125 | 139 817 | ||
68 | ![]() |
137 965 | 138 043 | 138 079 | 138 103 | 138 121 | 138 125 | 139 817 | |||
69 | ![]() |
137 965 | 138 043 | 138 079 | 138 103 | 138 121 | 138 125 | 139 817 | |||
70 | ![]() |
137 965 | 138 043 | 138 079 | 138 103 | 138 121 | 138 125 | 139 817 | |||
71 | 3s 7p | ![]() |
138 286 | 138 364 | 138 360 | 138 384 | 138 401 | 138 402 | 140 148 | 139 919 | −229 |
72 | ![]() |
138 439 | 138 522 | 138 545 | 138 569 | 138 587 | 138 589 | 140 266 | 140 090 | −176 | |
73 | ![]() |
138 441 | 138 524 | 138 547 | 138 571 | 138 589 | 138 591 | 140 268 | 140 092 | −176 | |
74 | ![]() |
138 445 | 138 529 | 138 552 | 138 575 | 138 593 | 138 595 | 140 272 | 140 096 | −176 | |
75 | 3p 3d | ![]() |
136 665 | 136 628 | 136 655 | 136 678 | 136 695 | 139 291 | 141 615 | 141 085 | −531 |
76 | ![]() |
136 684 | 136 649 | 136 677 | 136 699 | 136 717 | 139 311 | 141 665 | 141 110 | −555 | |
77 | ![]() |
136 709 | 136 677 | 136 704 | 136 727 | 136 745 | 139 338 | 141 768 | 141 143 | −625 | |
78 | 3p 3d | ![]() |
140 333 | 140 372 | 140 385 | 140 408 | 140 425 | 140 428 | 142 964 |
Notes. The energies are given as a function of the increasing active set of orbitals, accounting for VV correlation, where n indicates the maximum principle quantum number of the orbitals included in the active set. In Col. 10, the final energy values are displayed after accounting for CV correlation. The differences ΔE between the final computations and the observed values are shown in the last column. The sequence and naming of the configurations and LSJ-levels are in accordance with the final (CV) computed energies. The levels of the singlet and triplet 3s6h 1, 3H and the 3p3d 1D level have not yet been observed, and so the ΔE values are not available.
References. (a)NIST Atomic Spectra Database 2018 (Kramida et al. 2018).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.