Free Access

Table 2

Combinations of wind mass loss algorithms employed in this study.

ID Hot phase Cool phase WR phase
TeffTth TeffTth Xs< 0.4

V-dJ-NL Vink et al. A.1 de Jager et al. A.3 Nugis & Lamers A.6
V-dJ-H Vink et al. A.1 de Jager et al. A.3 Hamann et al. A.7
V-NJ-NL Vink et al. A.1 Nieuwenhuijzen & de Jager A.4 Nugis & Lamers A.6
V-NJ-H Vink et al. A.1 Nieuwenhuijzen & de Jager A.4 Hamann et al. A.7
V-vL-H Vink et al. A.1 van Loon et al. A.5 Hamann et al. A.7
V-vL-NL Vink et al. A.1 van Loon et al. A.5 Nugis & Lamers A.6
K-dJ-NL Kudritzki et al. A.2 de Jager et al. A.3 Nugis & Lamers A.6
K-dJ-H Kudritzki et al. A.2 de Jager et al. A.3 Hamann et al. A.7
K-NJ-NL Kudritzki et al. A.2 Nieuwenhuijzen & de Jager A.4 Nugis & Lamers A.6
K-NJ-H Kudritzki et al. A.2 Nieuwenhuijzen & de Jager A.4 Hamann et al. A.7
K-vL-NL Kudritzki et al. A.2 van Loon et al. A.5 Nugis & Lamers A.6
K-vL-H Kudritzki et al. A.2 van Loon et al. A.5 Hamann et al. A.7

Notes. The temperature threshold separating the hot phase and the cool phase is Tth = 15 000 (10 000) K when using the Kudritzki et al. (Vink et al.) algorithm. The WR phase is defined using the surface (outermost computational cell) hydrogen mass fraction Xs, without constraints on Teff. In the text, we do not mention the WR phase algorithm if the model discussed does not enter this phase. For a description of the algorithms, see Sect. 2.1 and the appendices listed in this table. We discuss the definition of each evolutionary phase in Sect. 2.2.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.