Free Access
Table B.3
Unblended transitions (i.e. non blended with other molecular species) of MF identified in the single-dish spectra (GBT and IRAM 30 m) towards G31.
Frequency | Transition | Eup |
(GHz) | (K) | |
|
||
45.22148 | v = 1, 4(1, 4)−3(1, 3) E | 193 |
45.39579 | v = 0, 4(1, 4)−3(1, 3) E | 6 |
45.39738 | v = 0, 4(1, 4)−3(1, 3) A | 6 |
45.75404 | v = 0, 3(1, 3)−2(0, 2) E | 4 |
45.75870 | v = 0, 3(1, 3)−2(0, 2) A | 4 |
45.84739 | v = 0, 14(3, 11)−14(3, 12) E | 70 |
45.88793 | v = 0, 14(3, 11)−14(3, 12) A | 70 |
81.31421 | v = 0, 16(3, 13)−16(2, 14) E | 89 |
81.36235 | v = 0, 16(3, 13)−16(2, 14) A | 89 |
81.38058 | v = 0, 3(2, 1)−2(1, 2) E | 6 |
82.24298 | v = 0, 7(1, 7)−2(0, 6) E | 16 |
82.24447 | v = 0, 7(1, 7)−2(0, 6) A | 16 |
82.52349 | v = 0, 19(4, 15)−19(3, 16) E | 126 |
82.56197 | v = 0, 19(4, 15)−19(3, 16) A | 126 |
83.60516 | v = 0, 10(3, 8)−10(2, 9) E | 38 |
83.63843 | v = 0, 10(3, 8)−10(2, 9) A | 38 |
84.22466 | v = 0, 11(4, 7)−11(3, 8) E | 50 |
84.23334 | v = 0, 11(4, 7)−11(3, 8) A | 50 |
84.28311 | v = 1, 7(2, 6)−6(2, 5) E | 206 |
84.44917 | v = 0, 7(2, 6)−6(2, 5) E | 19 |
84.45475 | v = 0, 7(2, 6)−6(2, 5) A | 19 |
85.32703 | v = 1, 7(4, 4)−6(4, 3) A | 215 |
85.37173 | v = 1, 7(3, 5)−6(3, 4) A | 210 |
85.50622 | v = 1, 7(4, 3)−6(4, 2) E | 215 |
85.55338 | v = 1, 7(5, 3)−6(5, 2) E | 220 |
85.63833 | v = 0, 4(2, 3)−3(1, 2) E | 9 |
85.74398 | v = 1, 7(4, 4)−6(4, 3) E | 214 |
85.77340 | v = 0, 21(5, 16)−21(4, 17) A | 156 |
85.78067 | v = 0, 20(5, 15)−20(4, 16) E | 143 |
85.78534 | v = 0, 20(5, 15)−20(4, 16) A | 143 |
85.91921 | v = 0, 7(6, 1)−6(6, 0) E | 40 |
86.02112 | v = 0, 7(5, 2)−6(5, 1) E | 33 |
86.02772 | v = 0, 7(5, 3)−6(5, 2) E | 33 |
86.02944 | v = 0, 7(5, 3)−6(5, 2) A | 33 |
86.03019 | v = 0, 7(5, 2)−6(5, 1) A | 33 |
86.03401 | v = 1, 7(3, 4)−6(3, 3) E | 210 |
86.15508 | v = 1, 7(3, 4)−6(3, 3) A | 210 |
86.17271 | v = 1, 7(3, 5)−6(3, 4) E | 209 |
86.21006 | v = 0, 7(4, 4)−6(4, 3) A | 27 |
86.22365 | v = 0, 7(4, 3)−6(4, 2) E | 27 |
86.22416 | v = 0, 7(4, 4)−6(4, 3) E | 27 |
86.25055 | v = 0, 7(4, 3)−6(4, 2) A | 27 |
86.26580 | v = 0, 7(3, 5)−6(3, 4) A | 23 |
86.26874 | v = 0, 7(3, 5)−6(3, 4) E | 23 |
87.14328 | v = 0, 7(3, 4)−6(3, 3) E | 23 |
87.16129 | v = 0, 7(3, 4)−6(3, 3) A | 23 |
87.76638 | v = 0, 8(0, 8)−7(1, 7) E | 20 |
87.76904 | v = 0, 8(0, 8)−7(1, 7) A | 20 |
88.05397 | v = 0, 19(5, 14)−19(4, 15) E | 130 |
88.05446 | v = 0, 19(5, 14)−19(4, 15) A | 130 |
88.17551 | v = 0, 10(4, 6)−10(3, 7) E | 43 |
88.18042 | v = 0, 10(4, 6)−10(3, 7) A | 43 |
88.22075 | v = 1, 7(1, 6)−6(1, 5) E | 205 |
88.35849 | v = 0, 22(5, 17)−22(4, 18) A | 170 |
88.68689 | v = 0, 11(3, 9)−11(2, 10) E | 45 |
88.72327 | v = 0, 11(3, 9)−11(2, 10) A | 45 |
88.77087 | v = 1, 8(1, 8)−7(1, 7) A | 208 |
88.85161 | v = 0, 7(1, 6)−6(1, 5) A | 18 |
88.86241 | v = 1, 8(1, 8)−7(1, 7) E | 207 |
98.42421 | v = 0, 8(5, 3)−7(5, 2) E | 38 |
98.43180 | v = 0, 8(5, 4)−7(5, 3) E | 38 |
98.43276 | v = 0, 8(5, 4)−7(5, 3) A | 38 |
98.43580 | v = 0, 8(5, 3)−7(5, 2) A | 38 |
98.60686 | v = 0, 8(3, 6)−7(3, 5) E | 27 |
98.61116 | v = 0, 8(3, 6)−7(3, 5) A | 27 |
98.68242 | v = 1, 8(3, 6)−7(3, 5) E | 214 |
98.68261 | v = 0, 8(4, 5)−7(4, 4) A | 32 |
98.71200 | v = 0, 8(4, 5)−7(4, 4) E | 32 |
98.74791 | v = 0, 8(4, 4)−7(4, 3) E | 32 |
98.79229 | v = 0, 8(4, 4)−7(4, 3) E | 32 |
110.05033 | v = 1, 9(6, 4)−8(6, 3) E | 237 |
110.15365 | v = 1, 10(1, 10)−9(1, 9) A | 218 |
110.23871 | v = 1, 10(1, 10)−9(1, 9) E | 217 |
111.40841 | v = 0, 9(4, 5)−8(4, 4) E | 37 |
111.45330 | v = 0, 9(4, 5)−8(4, 4) A | 37 |
111.67413 | v = 0, 9(1, 8)−8(1, 7) E | 28 |
111.68219 | v = 0, 9(1, 8)−8(1, 7) A | 28 |
111.73400 | v = 0, 10(1, 10)−9(0, 9) E | 30 |
111.73531 | v = 0, 10(1, 10)−9(0, 9) A | 30 |
140.16666 | v = 1, 11(2, 9)−10(2, 8) A | 231 |
147.24796 | v = 0, 18(6, 13)−18(5, 14) E | 125 |
147.24796 | v = 1, 12(5, 7)−11(5, 6) E | 250 |
147.25078 | v = 0, 12(11, 1)−11(11, 0) E | 126 |
147.25568 | v = 0, 12(11, 1)−11(11, 0) A | 126 |
147.25568 | v = 0, 12(11, 2)−11(11, 1) A | 126 |
147.26531 | v = 0, 12(11, 2)−11(11, 1) E | 126 |
147.30479 | v = 0, 19(6, 14)−19(5, 15) E | 137 |
147.31057 | v = 0, 12(10, 2)−11(10, 1) E | 112 |
147.31775 | v = 0, 12(10, 2)−11(10, 1) A | 112 |
147.31775 | v = 0, 12(10, 3)−11(10, 2) A | 112 |
147.32539 | v = 0, 12(10, 3)−11(10, 2) E | 112 |
147.33163 | v = 0, 19(6, 14)−19(5, 15) A | 137 |
147.39707 | v = 0, 12(9, 3)−11(9, 2) E | 100 |
147.40637 | v = 0, 12(9, 3)−11(9, 2) A | 100 |
147.40637 | v = 0, 12(9, 4)−11(9, 3) A | 100 |
147.41182 | v = 0, 12(9, 4)−11(9, 3) E | 100 |
147.52431 | v = 0, 12(8, 4)−11(8, 3) E | 89 |
147.53554 | v = 0, 12(8, 5)−11(8, 4) A | 88 |
147.53554 | v = 0, 12(8, 4)−11(8, 3) A | 88 |
147.53864 | v = 0, 12(8, 5)−11(8, 4) E | 88 |
147.53917 | v = 0, 17(6, 12)−17(5, 13) E | 115 |
154.98454 | v = 0, 12(3, 9)−11(3, 8) E | 53 |
155.00232 | v = 0, 12(3, 9)−11(3, 8) A | 53 |
161.41614 | v = 0, 13(5, 8)−12(5, 7) E | 71 |
161.45743 | v = 0, 20(2, 18)−20(1, 19) A | 128 |
161.45822 | v = 0, 13(5, 8)−12(5, 7) A | 70 |
168.49507 | v = 0, 13(3, 10)−12(3, 9) E | 61 |
168.51375 | v = 0, 13(3, 10)−12(3, 9) A | 61 |
168.91461 | v = 0, 15(2, 13)−14(3, 12) E | 76 |
168.93457 | v = 0, 15(2, 13)−14(3, 12) A | 76 |
169.57068 | v = 0, 20(7, 13)−20(6, 14) A | 157 |
170.23327 | v = 0, 14(3, 12)−13(3, 11) E | 68 |
170.59390 | v = 0, 6(4, 2)−5(3, 3) A | 23 |
171.06714 | v = 0, 23(7, 17)−23(6, 18) A | 196 |
171.79421 | v = 0, 14(13, 1)−13(13, 0) E | 174 |
171.79451 | v = 0, 14(13, 1)−13(13, 0) A | 174 |
171.79451 | v = 0, 14(13, 2)−13(13, 1) A | 174 |
171.84471 | v = 0, 14(12, 2)−13(12, 1) E | 157 |
171.84664 | v = 0, 19(1, 18)−19(1, 19) E | 109 |
171.84789 | v = 0, 14(12, 3)−13(12, 2) A | 157 |
171.84792 | v = 0, 14(12, 2)−13(12, 1) A | 157 |
171.84992 | v = 0, 19(1, 18)−19(0, 19) E | 109 |
171.86084 | v = 0, 14(12, 3)−13(12, 2) E | 157 |
171.88085 | v = 0, 25(5, 21)−25(4, 22) E | 210 |
171.91579 | v = 0, 14(11, 3)−13(11, 2) E | 142 |
171.92174 | v = 0, 14(11, 3)−13(11, 2) A | 142 |
171.92174 | v = 0, 14(11, 4)−13(11, 3) A | 142 |
171.93258 | v = 0, 14(11, 4)−13(11, 3) E | 142 |
171.93339 | v = 0, 19(1, 18)−19(1, 19) A | 109 |
171.93528 | v = 0, 25(5, 21)−25(4, 22) A | 210 |
171.93658 | v = 0, 19(1, 18)−19(0, 19) A | 109 |
171.99364 | v = 0, 19(2, 18)−19(0, 19) E | 109 |
172.01564 | v = 0, 14(10, 4)−13(10, 3) E | 128 |
172.02428 | v = 0, 14(10, 4)−13(10, 3) A | 128 |
172.02428 | v = 0, 14(10, 5)−13(10, 4) A | 128 |
172.15764 | v = 0, 14(9, 5)−13(9, 4) E | 116 |
172.16873 | v = 0, 14(9, 6)−13(9, 5) A | 116 |
172.16873 | v = 0, 14(9, 5)−13(9, 4) A | 116 |
172.36437 | v = 0, 14(8, 6)−13(8, 5) E | 104 |
172.37775 | v = 0, 14(8, 7)−13(8, 6) A | 104 |
172.37775 | v = 0, 14(8, 6)−13(8, 5) A | 104 |
172.38095 | v = 0, 14(8, 7)−13(8, 6) E | 104 |
172.38578 | v = 0, 15(1, 14)−14(2, 13) E | 71 |
172.39349 | v = 0, 15(1, 14)−14(2, 13) A | 71 |
172.69216 | v = 0, 14(7, 8)−13(7, 7) A | 95 |
172.69337 | v = 0, 14(7, 8)−13(7, 7) E | 95 |
172.69337 | v = 0, 14(7, 7)−13(7, 6) A | 95 |
173.19427 | v = 0, 14(6, 9)−13(6, 8) E | 86 |
173.21868 | v = 0, 14(6, 8)−13(6, 7) A | 86 |
173.51541 | v = 0, 15(2, 14)−14(2, 13) E | 71 |
173.52168 | v = 0, 15(2, 14)−14(2, 13) A | 71 |
173.65011 | v = 0, 14(4, 11)−13(4, 10) A | 73 |
173.81936 | v = 0, 14(5, 10)−13(5, 9) A | 79 |
173.82245 | v = 0, 14(5, 10)−13(5, 9) E | 79 |
174.20980 | v = 0, 15(1, 14)−14(1, 13) E | 71 |
174.21556 | v = 0, 15(1, 14)−14(1, 13) A | 71 |
174.21802 | v = 0, 27(6, 22)−27(5, 23) A | 249 |
174.37741 | v = 0, 14(5, 9)−13(5, 8) E | 79 |
174.40618 | v = 0, 14(5, 9)−13(5, 8) A | 79 |
174.54656 | v = 0, 16(0, 16)−15(1, 15) E | 73 |
174.54801 | v = 0, 16(0, 16)−15(1, 15) A | 73 |
174.56580 | v = 0, 16(1, 16)−15(1, 15) E | 73 |
174.56721 | v = 0, 16(1, 16)−15(1, 15) A | 73 |
174.58112 | v = 0, 16(0, 16)−15(0, 15) E | 73 |
174.58251 | v = 0, 16(0, 16)−15(0, 15) A | 73 |
174.60035 | v = 0, 16(1, 16)−15(0, 15) E | 73 |
174.60170 | v = 0, 16(1, 16)−15(0, 15) A | 73 |
224.31315 | v = 0, 18(5, 14)−17(5, 13) E | 118 |
224.60938 | v = 0, 18(6, 12)−17(6, 11) A | 125 |
237.29691 | v = 0, 13(4, 10)−12(3, 9) E | 65 |
237.29748 | v = 0, 20(2, 18)−19(2, 17) E | 128 |
237.30597 | v = 0, 20(2, 18)−19(2, 17) A | 128 |
237.30954 | v = 0, 21(2, 20)−20(2, 19) E | 132 |
237.31508 | v = 0, 21(2, 20)−20(2, 19) A | 132 |
237.31705 | v = 0, 13(4, 10)−12(3, 9) A | 65 |
237.34487 | v = 0, 21(1, 20)−20(1, 19) E | 132 |
237.35039 | v = 0, 21(1, 20)−20(1, 19) A | 132 |
258.08104 | v = 0, 22(2, 20)−21(2, 19) E | 152 |
258.08949 | v = 0, 22(2, 20)−21(2, 19) A | 152 |
258.30628 | v = 0, 11(5, 7)−10(4, 6) A | 56 |
258.49087 | v = 0, 23(2, 22)−22(2, 21) E | 156 |
258.49624 | v = 0, 23(2, 22)−22(2, 21) A | 156 |
258.49933 | v = 0, 21(12, 10)−20(12, 9) E | 232 |
258.50273 | v = 0, 23(1, 22)−22(1, 21) E | 156 |
258.50818 | v = 0, 23(1, 22)−22(1, 21) A | 156 |
Notes. Integrated intensities derived from the LTE fit.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.