Fig. B.1

Left panel: evolution as a function of time of the surface angular velocity, Ω, minus the orbital angular velocity, ωorb, normalised to the orbital angular velocity for a 15 M⊙ model at Z = 0.014 beginning its evolution on the ZAMS with an initial rotation around 420 km s-1 and an orbital period equal to 1.4 days. Its companion has 10 M⊙. The solid (blue) line corresponds to models computed with a mild coupling mediated by shear and meridional currents. The dashed (red) line corresponds to models with a strong coupling mediated by an internal magnetic field (solid body rotation). The horizontal dotted line has an ordinate equal to 0, i.e. its intersection with the other curves indicates when an equality between Ω and ωorb is obtained. Right panel: evolution as a function of time of Ω − ωorb (natural logarithm) for the same models as in the left panel. The horizontal dotted line is at an ordinate equal to (Ω − ωorb) /e. The other dotted line has a slope equal to 1 /trot as given by Eq. (6) in Paper I.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.