Free Access

Table 2

MALT90 spectral-line transitions.

Transitiona νb Eu/kBc ncritd Commentse
[MHz] [K] [cm-3]

H13CO+(J = 1−0) 86 754.330 4.16 1.6 × 105 high-density and ionisation tracer;
J = 1−0 is split into six hyperfine (hf) componentsf
SiO(J = 2−1) 86 847.010 6.25 2 × 106 shocked-gas/outflow tracer
HN13C(J = 1−0) 87 090.859 4.18 2 × 105g high-density tracer;
J = 1−0 is split into 11 hf components
with four having a different frequencyh
C2H(NJ, F = 13/2, 2 − 01/2, 1) 87 316.925 4.19 2 × 105i a tracer of photodissociation regions (PDRs);
NJ = 13/2 − 01/2 is split into three hf componentsj
HNCO(JKaKb = 40, 4 − 30, 3) 87 925.238 10.55 4.5 × 106k hot core and shock-chemistry tracer;
six hf componentsl; a-type transition (ΔKa = 0)
HNCO(JKaKb = 41, 3 − 31, 2) 88 239.027 53.86 2.3 × 106k six hf componentsl; a-type transition (ΔKa = 0)
HCN(J = 1 − 0) 88 631.847 4.25 2.4 × 106 high-density and infall tracer;
J = 1 − 0 is split into three hf componentsm
HCO+(J = 1 − 0) 89 188.526 4.28 1.7 × 105 high-density, infall, and ionisation tracer;
enhanced in outflows due to shock-induced UV radiationn
HC13CCN(J = 10 − 9, F = 9 − 8) 90 593.059 23.91 1.7 × 105o hot-core tracer; five hf components
HNC(J = 1 − 0) 90 663.572 4.35 2.9 × 105 high-density tracer; three hf components
13C34S(J = 2 − 1) 90 926.036 6.54 4.3 × 105p high-density tracer
HC3N(J = 10 − 9) 91 199.796 24.01 5.3 × 105 high-density/hot-core tracer;
six hf components
CH3CN(JK = 51 − 41) 91 985.316 20.39 4 × 105q hot-core tracer; seven hf components
H41α 92 034.475 89.5r ~ 5s ionised gas tracer; the principal quantum number
changes from n = 42 to 41 → α-type radio recombination line
13CS(J = 2 − 1) 92 494.303 6.66 5 × 105k high-density tracer; three hf components
N2H+(J = 1 − 0) 93 173.480 4.47 1.5 × 105 high-density/CO-depleted gas tracer;
J = 1 − 0 line has 15 hf components out of which
seven have a different frequencyt

Notes.

(a)

The rotational transitions here occur in the vibrational ground state (v = 0).

(b)

Rest frequencies adopted from the MALT90 webpage (http://malt90.bu.edu/parameters.html).

(c)

Upper-state energy divided by the Boltzmann constant.

(d)

Critical density at 15 K unless otherwise stated. Unless otherwise stated, the Einstein A coefficients and collision rates were adopted from the Leiden Atomic and Molecular Database (LAMDA (Schöier et al. 2005); http://home.strw.leidenuniv.nl/~moldata/).

(e)

Comments on the species and transition in question.

(g)

Collision rate for HNC from LAMDA was used to estimate ncrit.

(k)

ncrit at 20 K.

(m)

See e.g. Cao et al. (1993).

(o)

ncrit was estimated using the Einstein A coefficient from the Cologne Database for Molecular Spectroscopy (CDMS; Müller et al. 2005; http://www.astro.uni-koeln.de/cdms) and the HC3N collision rate at 15 K from LAMDA.

(p)

ncrit was estimated using the Einstein A coefficient from CDMS and the 12C34S collision rate at 20 K from LAMDA.

(q)

From SJF12.

(r)

The energy of the n = 42 level (E = −E0/n2, where E0 = 13.6 eV).

(s)

Critical electron density at 104 K (see Appendix D.1 in Gordon & Sorochenko 2009).

(t)

See Table 2 in Pagani et al. (2009) and Table 1 in Keto & Rybicki (2010).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.