Free Access

Table 1

Details of MCLZ and Demkov calculations.

Exit ΔE Rx ΔU(Rx) Molecular
Channelsa (a.u.) (a.u.) (a.u.) Symmetriesb Type

Ge0(3P) + H+(1S)  ⇌  Ge+ + H(2S) + ΔE      (, 3Π)

4s2 4p 2 0.2041 7.258 0.2089 I
4s2 4p 2 0.2041 7.406 0.1943 3Π I

Ge2+(1S) + H(2S)  →  Ge+ + H+(1S) + ΔE      ()

4s2 4p 2 0.0805 12.48 5.922E-03 I

Ge3+(2S) + H(2S)  →  Ge2+ + H+(1S) + ΔE      (, )

4s 4p 3 0.4633 4.648 0.2070 I
4s 4p 1 0.3333 6.240 7.592E-02 I

Ge4+(1S) + H(2S)  →  Ge3+ + H+(1S) + ΔE      ()

4p 2 0.8013 4.138 0.2732 I
4d 2D 0.3111 9.768 5.463E-03 I
5s 2S 0.2724 11.11 1.847E-03 I

Ge5+(2D) + H(2S)  →  Ge4+ + H+(1S) + ΔE      (, 1Π, 1Δ, , 3Π, 3Δ)

3d9 4d 3S 0.7481 5.723 0.1071 I
3d9 4d 1P 0.7219 5.901 9.530E-02 1Π I
3d9 4d 3G 0.7202 5.913 9.454E-02 , 3Π, 3Δ I
3d9 4d 3P 0.7161 5.942 9.274E-02 3Π I
3d9 4d 3D 0.7095 5.990 8.983E-02 , 3Π, 3Δ I
3d9 4d 1F 0.6993 6.065 8.544E-02 1Π, 1Δ I
3d9 4d 1D 0.6905 6.132 8.168E-02 , 1Π, 1Δ I
3d9 4d 3F 0.6903 6.134 8.157E-02 3Π, 3Δ I
3d9 5s 3D 0.5888 7.062 4.274E-02 , 3Π, 3Δ I
3d9 4d 1S 0.5763 7.200 3.870E-02 I
3d9 5s 3P 0.5677 7.299 3.603E-02 3Π I
3d9 5p 3 0.4370 9.313 7.827E-03 , 3Π I
3d9 5p 3 0.4313 9.430 7.139E-03 , 3Π, 3Δ I
3d9 5p 1 0.4277 9.506 6.724E-03 1Π, 1Δ I
3d9 5p 3 0.4149 9.786 5.385E-03 3Π, 3Δ I
3d9 5p 1 0.4136 9.815 5.262E-03 , 1Π I
3d9 5p 1 0.4107 9.882 4.989E-03 , 1Π, 1Δ I

Se0(3P) + H+(1S)  ⇌  Se+ + H(2S) + ΔE      (, 3Π)

4s2 4p34 0.1413 7.006 0.1304 I
4s2 4p32 0.0796 7.860 7.958E-02 3Π I
4s2 4p32 0.0796 8.020 7.240E-02 I
4s2 4p32 0.0338 9.251 3.396E-02 3Π I

Se2+(3P) + H(2S)  →  Se+ + H+(1S) + ΔE      (, 2Π, , 4Π)

4s2 4p32 0.1714 6.040 8.688E-02 2Π I

Se3+(2P°) + H(2S)  →  Se2+ + H+(1S) + ΔE      (, 1Π, , 3Π)

4s2 4p21S 0.5034 4.256 0.2568 I
4s 4p33 0.2037 9.921 4.588E-05 3Π II

Se4+(1S) + H(2S)  →  Se3+ + H+(1S) + ΔE      ()

4s 4p22D 0.6023 5.328 8.177E-03 II
4s 4p22S 0.4917 6.374 2.706E-03 II
4s2 4d 2D 0.3793 8.088 2.010E-02 I
4s2 5s 2S 0.3620 8.452 1.525E-02 I
4s2 5p 2 0.2095 14.38 1.178E-04 I

Se5+(2S) + H(2S)  →  Se4+ + H+(1S) + ΔE      (, )

4s 4d 1D 1.0394 4.342 0.2453 I
4s 4d 3D 0.8359 5.209 0.1483 I
4s 4d 3D 0.7012 6.051 8.625E-02 I
4s 4f 1 0.3639 11.11 1.854E-03 I

Br0(2P°) + H+(1S)  ⇌  Br+ + H(2S) + ΔE      (, 2Π)

4s2 4p43P 0.0589 7.241 6.159E-02 2Π I
4s2 4p41D 0.0105 9.612 1.191E-02 2Π I
4s2 4p41D 0.0105 10.05 8.681E-03 I

Br2+(4S°) + H(2S)  →  Br+ + H+(1S) + ΔE      (, )

4s2 4p43P 0.2947 3.576 0.3579 I

Br3+(3P) + H(2S)  →  Br2+ + H+(1S) + ΔE      (, 2Π, , 4Π)

4s 4p42D 0.4068 5.219 9.140E-03 2Π II
4s2 4p2 5s 4P 0.1462 13.73 2.046E-04 , 4Π I
4s2 4p2 5s 2P 0.1346 14.91 7.473E-05 , 2Π I

Br4+(2P°) + H(2S)  →  Br3+ + H+(1S) + ΔE      (, 1Π, , 3Π)

4s 4p33 0.5728 5.570 6.369E-03 3Π II
4s 4p33 0.5091 6.176 3.352E-03 , 3Π II
4s 4p31 0.5002 6.277 3.006E-03 1Π II
4s2 4p 4d 3 0.4212 7.336 3.507E-02 , 3Π I
4s 4p31 0.4157 7.426 8.421E-04 , 1Π II
4s2 4p 4d 3 0.3800 8.074 2.031E-02 3Π I
4s2 4p 4d 3 0.3468 8.803 1.165E-02 , 3Π I
4s2 4p 4d 1 0.3448 8.852 1.121E-02 , 1Π I
4s2 4p 4d 1 0.3301 9.227 8.373E-03 , 1Π I
4s2 4p 4d 1 0.3245 9.380 7.426E-03 1Π I
4s2 4p 5s 3 0.3180 9.564 6.422E-03 , 3Π I
4s2 4p 5s 1 0.3035 10.04 4.526E-03 , 1Π I
4s2 4p 5p 3D 0.1619 18.57 2.983E-06 , 3Π I

Br5+(1S) + H(2S)  →  Br4+ + H+(1S) + ΔE      ()

4s 4p22D 1.1321 4.040 2.853E-02 II
4s2 4d 2D 0.8360 5.209 0.1483 I
4s2 5s 2S 0.7214 5.904 9.511E-02 I

Kr+(2P°) + H(2S)  ⇌  Kr + H+(1S) + ΔE      (, 1Π, , 3Π)

4s2 4p61S 0.0147 8.394 1.595E-02 I

Kr2+(3P) + H(2S)  →  Kr+ + H+(1S) + ΔE      (, 2Π, , 4Π)

4s2 4p52 0.3873 2.677 0.4928 2Π I

Kr3+(4S°) + H(2S)  →  Kr2+ + H+(1S) + ΔE     (, )

4s2 4p43P 0.8485 2.577 0.5047 I
4s2 4p3 4d 5 0.2269 8.940 1.047E-02 I
4s2 4p3 5s 5 0.1942 10.39 3.313E-03 I
4s2 4p3 4d 3 0.1816 11.10 1.870E-03 I
4s2 4p3 5s 3 0.1675 12.01 8.767E-04 I
4s2 4p3 4d 3 0.1264 15.86 3.248E-05 I
4s2 4p3 5s 3 0.1099 18.23 4.025E-06 I

Kr4+(3P) + H(2S)  →  Kr3+ + H+(1S) + ΔE      (, 2Π, , 4Π)

4s 4p44P 0.8787 3.834 3.429E-02 , 4Π II
4s2 4p2 4d 2Pa 0.6847 4.775 0.1924 , 2Π I
4s2 4p2 4d 4F 0.6265 5.155 0.1533 , 4Π I
4s2 4p2 4d 4D 0.6030 5.328 0.1378 4Π I
4s2 4p2 4d 2Fa 0.5937 5.400 0.1317 , 2Π I
4s 4p42P 0.5532 5.744 5.308E-03 , 2Π II
4s2 4p2 4d 4P 0.5079 6.193 7.838E-02 , 4Π I
4s2 4p2 5s 4P 0.4901 6.394 6.834E-02 , 4Π I
4s2 4p2 4d 2Da 0.4719 6.615 5.864E-02 2Π I
4s2 4p2 5s 2P 0.4691 6.650 5.723E-02 , 2Π I
4s2 4p2 4d 2Db 0.4386 7.069 4.253E-02 2Π I
4s2 4p2 4d 2Pb 0.4257 7.266 3.690E-02 , 2Π I
4s2 4p2 4d 2Fb 0.4240 7.293 3.618E-02 , 2Π I
4s2 4p2 5s 2D 0.4124 7.482 3.152E-02 2Π I
4s2 4p2 4d 2Dc 0.3710 8.259 1.766E-02 2Π I
4s2 4p2 5p 2 0.3595 8.508 1.461E-02 I
4s2 4p2 5p 4 0.3289 9.260 8.159E-03 , 4Π I
4s2 4p2 5p 4 0.3203 9.498 6.766E-03 4Π I
4s2 4p2 5p 4 0.3058 9.931 4.797E-03 I
4s2 4p2 5p 2D 0.3036 10.00 4.540E-03 , 2Π I
4s2 4p2 5p 2P 0.2884 10.51 3.011E-03 2Π I
4s2 4p2 5p 2 0.2543 11.88 9.761E-04 2Π I
4s2 4p2 5p 2D 0.2512 12.03 8.658E-04 , 2Π I
4s2 4p2 5p 2P 0.2235 13.49 2.522E-04 2Π I

Kr5+(2P°) + H(2S)  →  Kr4+ + H+(1S) + ΔE      (, 1Π, , 3Π)

4s2 4p 4d 3 0.9083 4.841 0.1851 , 3Π I
4s2 4p 4d 3 0.8781 4.998 0.1687 3Π I
4s2 4p 4d 1 0.8110 5.344 0.1364 , 1Π I
4s2 4p 4d 1 0.7946 5.437 0.1287 , 1Π I
4s2 4p 5s 3 0.7633 5.619 0.1146 , 3Π I
4s2 4p 5s 1 0.7342 5.816 0.1008 , 1Π I
4s2 4p 5p 1P 0.5858 7.094 4.177E-02 1Π I
4s2 4p 5p 3D 0.5761 7.202 3.865E-02 , 3Π I
4s2 4p 5p 3P 0.5554 7.446 3.237E-02 3Π I
4s2 4p 5p 3S 0.5395 7.646 2.794E-02 I
4s2 4p 5p 1D 0.5264 7.822 2.452E-02 , 1Π I
4s2 4p 5p 1S 0.4759 8.592 1.370E-02 I

Rb0(2S) + H+(1S)  ⇌  Rb+ + H(2S) + ΔE      ()

4s2 4p61S 0.3462 10.46 0.3332 I

Rb2+(2P°) + H(2S)  →  Rb+ + H+(1S) + ΔE      (, 1Π, , 3Π)

4s2 4p61S 0.5031 2.175 0.5374 I

Rb3+(3P) + H(2S)  →  Rb2+ + H+(1S) + ΔE      (, 2Π, , 4Π)

4s2 4p4 4d 4D 0.2275 8.917 1.066E-02 4Π I
4s2 4p4 4d 4F 0.1798 11.20 1.710E-03 , 4Π I
4s2 4p4 5s 2D 0.1629 12.34 6.637E-04 2Π I
4s2 4p4 4d 2P 0.1593 12.62 5.269E-04 , 2Π I
4s2 4p4 4d 4P 0.1559 12.89 4.192E-04 , 4Π I
4s2 4p4 4d 2D 0.1463 13.73 2.062E-04 2Π I
4s2 4p4 4d 2F 0.1428 14.06 1.552E-04 , 2Π I
4s2 4p4 5s 2P 0.1261 15.90 3.142E-05 , 2Π I
4s2 4p4 4d 2D 0.1219 16.45 1.950E-05 2Π I

Rb4+(4S°) + H(2S)  →  Rb3+ + H+(1S) + ΔE      (, )

4s2 4p3 4d 5 0.6392 5.043 0.1642 I
4s2 4p3 4d 3D 0.5865 5.458 0.1270 I
4s2 4p3 4d 3 0.5553 5.724 0.1070 I
4s2 4p3 4d 3 0.5237 6.027 8.764E-02 I
4s2 4p3 5s 5 0.4923 6.364 6.976E-02 I
4s2 4p3 5s 3 0.4619 6.744 5.357E-02 I
4s2 4p3 4d 3D 0.4225 7.316 3.558E-02 I
4s2 4p3 5s 3 0.3955 7.778 2.534E-02 I
4s2 4p3 4d 3 0.3935 7.815 2.465E-02 I
4s2 4p3 4d 3D 0.3931 7.822 2.452E-02 I
4s2 4p3 5p 5P 0.3123 9.732 5.622E-03 I
4s2 4p3 5p 3Pa 0.2901 10.45 3.161E-03 I
4s2 4p3 5p 3F 0.2189 13.77 1.988E-04 I
4s2 4p3 5p 3Pb 0.1942 15.50 4.465E-05 I

Rb5+(3P) + H(2S)  →  Rb4+ + H+(1S) + ΔE      (, 2Π, , 4Π)

4s 4p44P 1.3832 3.388 4.999E-02 , 4Π II
4s 4p42D 1.2509 3.706 3.833E-02 2Π II
4s 4p42P 1.1465 3.996 2.969E-02 , 2Π II
4s2 4p2 5s 4P 0.7897 5.465 0.1264 , 4Π I
4s2 4p2 5s 2P 0.7817 5.513 0.1226 , 2Π I
4s2 4p2 5s 2D 0.7110 5.979 9.049E-02 2Π I

Xe0(1S) + H+(1S)  ⇌  Xe+ + H(2S) + ΔE      ()

5s2 5p52 0.0380 7.933 3.515E-02 I

Xe2+(3P) + H(2S)  →  Xe+ + H+(1S) + ΔE      (, 2Π, , 4Π)

5s2 5p52 0.2551 4.078 0.2817 , 2Π I

Xe3+(4S°) + H(2S)  →  Xe2+ + H+(1S) + ΔE      (, )

5s2 5p3 5d 5 0.1307 15.35 5.097E-05 I

Xe4+(3P) + H(2S)  →  Xe3+ + H+(1S) + ΔE      (, 2Π, , 4Π)

5s 5p44P 0.5315 5.947 4.283E-03 , 4Π II
5s 5p42D 0.4386 7.068 1.259E-03 2Π II
5s2 5p2 5d 2Pa 0.3920 7.843 2.414E-02 , 2Π I
5s2 5p2 5d 4F 0.3608 8.479 1.494E-02 , 4Π I
5s2 5p2 5d 2Fa 0.3494 8.741 1.222E-02 , 2Π I
5s2 5p2 5d 4D 0.3172 9.587 6.306E-03 4Π I
5s2 5p2 5d 4P 0.2713 11.15 1.781E-03 , 4Π I
5s2 5p2 5d 2G 0.2647 11.43 1.425E-03 2Π I
5s2 5p2 6s 4P 0.2450 12.32 6.749E-04 , 4Π I
5s2 5p2 5d 2Da 0.2437 12.39 6.397E-04 2Π I
5s2 5p2 6s 2P 0.2237 13.48 2.548E-04 , 2Π I
5s2 5p2 5d 2Fb 0.1969 15.29 5.361E-05 , 2Π I
5s2 5p2 5d 2Db 0.1935 15.55 4.253E-05 2Π I
5s2 5p2 5d 2Pb 0.1867 16.12 2.605E-05 , 2Π I
5s2 5p2 4f 4 0.1645 18.27 3.870E-06 , 4Π I

Xe5+(2P°) + H(2S)  →  Xe4+ + H+(1S) + ΔE      (, 1Π, , 3Π)

5s2 5p 4f 3D 0.9346 4.745 0.1958 , 3Π I
5s2 5p 4f 1D 0.8902 4.942 0.1744 , 1Π I
5s2 5p 6p 3D 0.7893 5.468 0.1262 , 3Π I
5s2 5p 6p 3P 0.7835 5.502 0.1235 3Π I
5s2 5p 6p 1P 0.7696 5.586 0.1170 1Π I
5s2 5p 6p 3S 0.7487 5.719 0.1074 I
5s2 5p 6p 1D 0.7361 5.803 0.1017 , 1Π I
5s2 5p 6p 1S 0.6947 6.100 8.346E-02 I

Notes. The table includes exit channels, molecular symmetries, energy defects ΔE, avoided crossing or interaction distances Rx, and the energy separations of the adiabatic potentials ΔU(Rx). The molecular symmetries of each entrance channel is given in parentheses after the reaction.

(a)

Exit channels refer to states in the resulting ion after CT with H or H+. Only information about electrons in the valence principal quantum number shell is given. Some terms are given a lettered sub-index (e.g., 2Da) if multiple terms with the same configuration and orbital and spin angular momenta are exoergic exit channels. Note that exit channels with rate coefficients smaller than 10-14 cm3 s-1 (the canonical radiative CT rate) in the temperature range 102–106 K are not listed, unless no exoergic exit channels with larger rate coefficients exist.

(b)

Only molecular symmetries that couple to the entrance channel are listed.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.